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Abstract 

We present a problem data set for stochastic programming, and 
associated real world applications. The problem descriptions were col- 
lected from the literature, with emphasis on variety of problem struc- 
ture and application. Each problem has a short description, math- 
ematical problem statement, and notational reconciliation to a stan- 
dard problem format. In addition, most problems have one or more 
corresponding data files in SMPS[1] format. 
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1    Introduction 

Stochastic programming has grown in importance in recent decades, because 
it allows the modeler to accurately represent planning under uncertainty. 
With strong interest in solving such problems and in finding more efficient 
solution techniques, there has arisen a need for a test set of stochastic pro- 
gramming problems. 

One of the most popular forms of stochastic programming problems is 
the multistage stochastic linear program (MSSLP): 

minimize  Z(x{) := cjxi + ^(^I) 

subject to -Ai^i = h 
xi > 0,   xi e W11 

where 
Qt{xt-i):=        E        [Qtfa_i,Ct,bt,At,Tt)], 

{ct,bt,At,Tt} 

Qt(xt-uCUbt,At,Tt) := 
inf {cjxt + Qt+i(xt) ■ Atxt = bt- Ttxt-i,xt > 0} 

xt€Mnt 

t = 2,3,... ,JV — 1, 
and 

QN(xN-i,Cx,bN,Ax,TN) := 
inf   {cLxN : ANxN = bN - TNxN-i,xN > 0}. 

xNew.nN 

(1) 

Here and throughout this paper, boldface letters denote random variables, 
and   E [■] denotes the expected value taken with respect to x. 

While MSSLPs are growing in popularity, many of the applications are 
proprietary, and therefore the models are not publicly available. Test set 
collections of MSSLPs exist [8, 9]. However, they need to be enriched with 
newer applications. Also, it would be helpful if the original applications 
are described in the notation of the original model, and related to a unified 
notation such as in (1). In addition, it would be helpful to make the data for 
the test problems available in SMPS [1] format, the (emerging) standard for 
specifying input to software for MSSLPs. 

To address the above needs, we have collected a group of eleven problem 
classes from a variety of settings. They are all MSSLPs, but of various struc- 
tures and sizes. Some have only stochastic right hand sides (bt, t > 1), while 
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some have stochastic data elsewhere. In some cases, problem instances were 
explicitly stated in the literature. In other cases, we created the problems 
based solely on the problem description in the literature, and in some cases, 
there is not yet any sample problem. 

For each model application, we present a problem description, a con- 
cise problem statement, and, if available, a numerical example given by the 
model authors. We have attempted to stay as close to the authors' notation 
as possible in these subsections. Additionally, where feasible, we present a 
notational reconciliation, which shows how to transform the notation of the 
problem into form (1). 

Each problem class may be used to generate one or more instances of 
MSSLPs. We have created 15 such instances. The data for these 15 test 
problems, as well as 12 other test problems that we did not create, are avail- 
able in SMPS format [1] from the authors. 

Each section covers a single problem class. At the beginning of each 
section, we give a citation to the original application, a brief description of 
the problem structure, and if applicable the names of the SMPS files for the 
associated problem instances. 

It is the intention of the authors to update the classes of applications and 
the test problem instances as new application areas become prominent, and 
to make the information that we present below for each application area, as 
well as SMPS inputs for each test problem instance freely available to the 
stochastic programming research community. 

In that spirit, we encourage colleagues to submit new problem data with 
an accompanying description. Such submissions should include the following: 

1. description of the application and problem notation, 

2. problem statement, in the same notation, 

3. numerical example, if practical, 

4. reconciliation to the notation of (1), 

5. data files in SMPS format for each instance, and 

6. optimal solutions for each instance and example. 



2    Airlift operations scheduling 

Due to J.L. Midler and R.D. Wollmer [12] 
(2 stage, mixed integer linear stochastic problem) 

f/AIRL.sto.first 
/airlift/AIRL.cor, /AIRL.tim, < 

I/AIRL.sto.second 

2.1    Description 

In scheduling monthly airlift operations, demands for specific routes can be 
predicted. Actual requirements will be known in the future, and they may 
not agree with predicted requirements. Recourse actions are then required 
to meet the actual requirements. The actual requirements are expressed in 
tons, or any other appropriate measure, and they can be represented by a 
random variable. Aircraft of several different types are available for service. 
Each of these types of aircraft has its own restriction on number of flight 
hours available during the month. 

The recourse actions available include allowing available flight time to go 
unused, switching aircraft from one route to another, and buying commercial 
flights. Each of these has its associated cost, depending on the type(s) of 
aircraft involved. 

Let Fi be the maximum number of flight hours for aircraft of type i 
available during the month, and let a^ be the number of flight hours required 
for an aircraft of type i to complete one flight of route j. Then if Xij is the 
number of flights originally planned for route j using aircraft of type i, the 
first stage constraint is 

^aijXij < Fi, Vz. (2) 
i 

When taking recourse action, we are under the constraint that we cannot 
switch away more flight hours from aircraft of type i and from route j, than 
we have originally scheduled for such. This leads to a second stage constraint: 

y^OjjkXijk < ajjXjj, Vi,Vj. (3) 

Here, x^ represents the increase in the number of flights for route k flown 
by aircraft type i, because of being switched from route j. Also, a^ is the 



number of flight hours required for aircraft of type % to fly route k, after 
having been switched from route j. Note that an increase of xijk flights for 
route A; results in the cancellation of 

aij 
%ijk 

flights for route j, since '& flights' and lj flights' are not necessarily equal 
units. 

We also have the recourse constraint that the demand for each route 
must be met. Let 6^- be the carrying capacity (in tons) of a single flight of 
an aircraft of type i, flying route j. Then the load originally scheduled to be 
carried on route j (i.e. the 'best guess' of the demand) is 

i 

The total carrying capacity switched away from route j in the recourse action 
is 

E M 2:) *<*■ (5) 

Conversely, the carrying capacity switched to route j is 

^2 hxikj- (6) 

If we let yf be the demand for route j which is contracted commercially in 
the recourse, and yj be the unused capacity assigned to route j, then we 
may combine expressions (4), (5), and (6) to form the demand constraint for 
the recourse1: 

£ bijXlj - £ bzj (^) xijk + £ bijXikj + yf-yr = di.        (7) 

Here, dj is the random variable representing the demand for route j. 

iWe believe a typographical error was made in [12, equation (2.3)].    Specifically, 

' ^2 bijXijk - yp should read ' ^ bijxikj +yf'- 
i,kjtj i,k^j 



Finally, let c^ be the cost for aircraft type i to be initially assigned and 
fly one flight of route j. Let c^ be the cost for aircraft type i to fly one 
flight of route k, after having been initially assigned route j. Let c^ be the 
cost per ton of commercially contracted transport on route j, and let cj be 
the cost per ton of unused capacity on route j. 

2.2    Problem statement 

The problem statement combines equations (2), (3), and (7): 

minimize     /^CjjXjj + Q({xij}) 

subject to    2_.aijxij < Fi, Vi 
j 

Xij > 0, Vi, Vj, 

where 

E  < min J2 (c^ -c^)x^ + 5ZcM + Ylc3 y~3 

subject to 

k+3 

~~ 5Z biA ~ ) Xi*k + 5Z ^'^ + y/ ~~ y7 = dJ ~ XI biJxi3>VJ 
i,k^3 i>fc^' 

Xijk,yf,yj > o,       Vi,Vj,Vk. 

Note that the variables :% and a^ represent numbers of flights, and 
therefore should be integer valued. This is not specified in the problem 
statement, however. This is apparently an acceptable compromise to Midler 
and Wollmer [12] in order to simplify the problem, and they recommend that 
the user adopt his/her own rounding scheme. 



2.3    Numerical example 

Midler and Wollmer [12] provide a small numerical example, with two routes 
and two types of aircraft. The constants are given as follows: 

Flying hours per 
round trip 

Carrying capacity 
(tons) 

an «21 0-12 «22 &n hi &12 &22 

24 49 14 29 50 20 75 20 

Cost per flight 

($) 

Penalty costs 
($/ton) 

Cll C21 Cl2 C22 4 c2 Cl c2 

7200 7200 6000 4000 500 250 0 0 

Flying hours - 
switched flights 

Costs per flight- 
switched ($) 

Oll2 Ol21 «212 0221 C112 C121 C212 C221 

19 29 36 56 7000 8200 5500 8700 

The total flying time available is Fi = F2 = 7200. The demand for route 
1, di, follows a lognormal distribution with parameters (xx = 1000, ax = 50, 
and d2 independently follows a lognormal distribution with parameters /J,2 = 
1500, 02 = 300. 

The optimal solution of this problem, 

xn    Xu 
X21   xn 

16.5 
6.7 

23.2 
0.0 

was given by Midler and Wollmer [12], and is based on drawing a sample of 
25 observations from each distribution of dx and d2. Midler and Wollmer 
[12] did not specify how the observations were drawn from the distributions. 
Therefore, we were not able to exactly replicate this problem. We have cre- 
ated two versions: airlift .first and airlift. second. These are intended 
to be as close as possible to the original problem stated here. 



2.4    Notational reconciliation 

To make this problem fit the notation of Problem (1), we make some minimal 
changes. Let I be the total number of aircraft types, J be the total number 
of routes, and set n\ := (/)(</) + I. Set 

xn 

Zl2 

Cll 

Cl2 

Xi := 

x2i 

xu 
Si 

s2 

c\ :-- 

C21 

cu 
0 
0 

61 := 

Fi 
F2 

Fj 

and 

Ai 

si 

au a>u 
fl2i    • • •   «2J 

/' x/ 

a/i   • • •   au 



Note that the number of stages, N, is two. The recourse vectors are 

x2 := 

and 

»112 

»113 

XUJ 

»121 

»123 

»12J 

XlJ(J-l) 

«11 

Sl2 

+ 
Vi 

Vt 
Vi 

Vj 

The transition matrix is 

T2:= 

C2 := 

Cii2 - Ciiaii2/oii 

Cii3 - cnaii3/an 

CIIJ - ciißiu/aii 

Cl21 - Ci20l2l/Ol2 

Cl23 — Ci20l23/ol2 

Cl2J - Cl20l2j/0l2 

cu(j-i) - cijaij(j-i)/au 

0 
0 

g/Jxl 

di 
d2 

-an 
-ai2 

0 
Q/JX/ 

0 -a/7 
B^ 52     •• •     5, QJXJ 



where 

Bi 

The matrix A2 is defined by 

bn 0 
bi2 

'HJ 

where 

Here, 

" A jIJxIJ QIJX2J 

. B CiJxIJ TJXJ     _jJxJ 

A 

a 11 
a~[2 0 

*/j 

B:-- ft« &; 

&1 

122 

°1U    °12J 

bin 
b]j2 

bljjj 

and 

ii] '■— /  j Q>ijk&kj 

k=l 

kkj ■= <     p: 
Z)p=i -bik {a-ikp/aik) ePj    if j = k, 
bijejk ifj^k. 

ej e 
r-i 

"j* 

0 € E7"1 

if j < k 
J-1    if j? > /c 

if j = k. 



3    Forest planning 

Due to H. Gassmann [8] 
(Multistage, linear stochastic problem) 
/stocforl /stocforl.cor, /stocforl.tim, /stocforl.sto 
/stocfor2 /stocfor2.cor,/stocfor2.tim,/stocfor2.sto 
/stocfor3 /stocfor3.cor, /stocfor3.tim, /stocfor3.sto 

3.1    Description 

The job of a long range forest planner is to decide what parts of the forest 
will be harvested when. Important criteria for such a decision are the age of 
the trees, and the likelihood that trees left standing will be destroyed by fire. 

Gassmann [8] creates a set of K age classifications of equal length (e.g. 20 
years), and places each portion of the forest into one of the classes, according 
to the age of the trees within. He also divides the future planning horizon 
into T rounds, each with a time length equal to that of each age classification. 
That is, in one time round, any trees that are not destroyed or harvested will 
move to the next age class. 

Let the vector st G RK represent the total amount of area of the forest 
in each age class 1 through K in round t, and let xt € M.K be the area of the 
forest harvested in each age class in round t. Obviously, we cannot harvest 
more trees of any age than currently exist. Therefore, 

xt<su   i = l,2,...,T. (8) 

Immediately replanting harvested land will cause an area increase of Qxt in 
the next round, where 

Q 

l  l  •••  l 
0   0   •••   0 

0   0   •••   0 

The area of unharvested trees in round t will be st — xt. Of this area, a 
random proportion pt = (pti, Pt2, • • • , Ptic)T £ ^K will be destroyed by fire 

10 



in round t. Let 

Pt = 

Ptl Pt2 • • • PtK-1 PtK 
1-pti        o        ••• 0 0 

0       l-pt2    o ••• 0 

0 0      1 - PtK-1     1 - PtK 

Then, assuming all burned areas are immediately replanted, and therefore 
wind up in age class 1, 

st+i = Pt(s* - xt) + Qxt. (9) 

The material balance in (9), along with the availability limits in (8), will be 
constraints in the problem. 

The last type of constraint that will be in the problem is of the form 

ayTXt-i < yTxt < /V^t-i,   t = 2,3,... , T. (10) 

Here y e RK represents the yield, and a and ß are constants. This con- 
straint might represent limits on how fast the timber industry can change its 
purchasing volume from one time period to the next. 

The objective will be to maximize the value of timber, both cut and 
remaining after round T, subject to the constraints (8), (9), and (10). Since 
the time scale of the problem is quite large, Gassmann discounts monetary 
values in future round t to current monetary scales by multiplying by 5t'1. 
For example, if each round is 20 years long, for interest (or inflation) rate i, 
8 — (1 — i)20. Therefore, the present value of timber harvested in round t is 

s'-Vxt. 

If v E M.K is the value of the trees standing after round T, then the total 
value of trees left standing after round T and cut during rounds 1 through 
Tis 

^^Vst + ^t/V+i. 
t=i 

11 



3.2    Problem statement 

We are given the vector si e RK, denoting the area of forest covered with 
timber in the K different age classes at the beginning of time period 1. We 
are also given y E RK the vector of yields (in units currency/hectacre of 
forest harvested), v G M.K the value of standing timber after round T, the 
discount rate 5, and constants a, ß. 

With such information, the problem is then to 

maximize   yTXi + 0,2{xi) 

subject to   £1 < si (11) 

xi >0, 

where 

and 

Qt{xt-i)   :=             E {max [5* 1yTxt + Qt+i(xt)] : 
{Pt-i.Pt PT} 

xt    <    st (12) 

st    =    (Q ~ Pt-iK-i + Pt-ist-i (13) 
ayrxt^    <    yTxt < ßyJxt-i},   t = 2,... , T, (14) 

QT+i(xT)   :=   {STvTsT+i : sT+1 = (Q - PT)xT + PTsT} ■       (15) 

Equations (11), (12) and (15) have been changed slightly from the prob- 
lem statement in [8], in order to more closely match the content of the ex- 
ample problems submitted to Netlib by Gassmann [7]. 

3.3    Numerical results 

Gassmann [8] reported numerical results for many cases. In all cases, he 
assigned the values shown in Table 1. For the distribution of P, Gassmann 
[8] used several different discretizations. The few included in Table 2 are 
called "upper bound discretizations" by Gassmann. In the first set of trials, 
Gassmann [8] found the constraints to be too severe. Therefore, he changed 
the problem as follows. Violations to the constraints 

ayTxt-i < yTxt < ßyTxt-i 

12 



Table 1: Values of parameters used in Gassmann [8] 

r = 7 K = 8 Ö = 0.905 

a = 0.9 /? = !.! 
320.3417 241 0 
356.1874 125 0 
398.4370 1,404 16 

v = 
448.2349 
506.9294 
564.9294 

587.9294 
595.9294 

5l = 
2,004 

9,768 
16,385 
2,815 

61,995 

y = 
107 
217 
275 

298 
306 

were allowed, but penalized. These constraints were replaced with 

ayJxt-i yTxt < 

yTxt - ßyTxt^   < 

Pa,Pt2   > 

Pn 

Pt2 

0, 

and the term 

T-l 

$^-<** lrY(pti+Pa) 
t=i 

was added to the objective. In all the numerical results, 7 := 50. 
Results from Gassmann [8] are shown in Table 3. Here, a discretization 

structure of i.jjj.kkk means that an i point discretization was used in the 
first round, a j point discretization was used in rounds two through four, 
and a k point discretization was used in rounds five through seven. The only 
nonzero component of the optimal x\ was component 8. 

Problem statements in MPS format may be found at Netlib, at http:// 
www.netlib.org/lp/data/ under the names stocforl, stocfor2, and stocfor3 

[7]- 
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Table 2: Discretizations used in Gassmann [8] 

1 point discretization 
Fire Rate 0.06258 
Probability    1.000 
2 point discretization 
Fire Rate      0.08612   0.04240 
Probability   0.4616     0.5384 
3 point discretization 
Fire Rate      0.10499   0.07354   0.04240 
Probability   0.1847     0.2769     0.5384 

Table 3: Results from Gassmann [8] 
Discretization Structure 

1.111.111 1.222.222 1.322.222    1.332.222    1.333.222 1.333.322 

Obj. value 
Opt. 2:1(8) 

41,132.0 
20,495.8 

40,914.3 
20,047.9 

40,897.0      40,864.2      40,835.8 
20,076.9      19,952.8      19,947.4 

40,703.1 
19,726.6 

3.4    Notätional reconciliation 

To express the problem in the notation of Problem (1), we define the slack 
variable zt := st - xt, which allows us to eliminate the variable st for t > 1. 
The vectors ct and xt are defined and redefined, respectively, as 

ct ■-- 

QKX! 

0 
0 

xt 

Xt 

Zt 

k 
mt 

where lt,mt <E R are slack variables.  This definition for ct is not valid for 
t = T, when we have 

cT := 

-öT-l(y + 5QTv) 

0 
0 

PT
T

ü 

14 



Let 

Ai ._  j jKxK    jKxK    0    o j 

and &i := S].. Then for t = 2,3,... , T, we define 

At:= 

jKxK    jKxK    Q    Q 

"T 0 10 y 
-y o     o 1 

bt~ 

and 

Tt:= 
-Q     -Pt_x   0   0 

-/3l/T        0       0   0 
ayT 0        0   0 

0 
0 

(!)• 

Finally, setting N := T, we have expressed the problem in the format of 
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4    Electrical investment planning 

Due to Louveaux and Smeers [11] 
(Two-stage, linear stochastic problem) 
/electric /LandS.cor, /LandS.tim, /LandS.sto 

4.1    Description 

Louveaux and Smeers [11] consider the challenge of planning investments in 
the electricity generation industry. While the model is, in general, multistage, 
the specific example given in [11] is two-stage. The general JV-stage stochastic 
model will be developed in this section and the next, with the specific example 
in the following section. 

In each stage of planning, investments in n different technologies may be 
considered. Technology i has an associated random investment cost, Ci, a 
random operating cost, qi, and an availability factor, a;. The availability 
factor is the portion of time during which the technology may be operated. 

For planned capacity, a distinction is made between capacity which was 
planned before time t = 1, and that which was planned after t = 0. (Here, t 
is an integer.) The former, #,, includes capacity which exists on the ground at 
the start of the simulation, and new capacity that has already been planned. 
The latter is denoted by xt. If we let st be the total capacity, both actual 
and on order, planned after t = 0, then we have, 

Si  = Xi 

and 

s\ = str'i+x\-xtrL\   i = l,...,n,   t = 2,...,N. 

Capacity in technology i also has a construction delay, A;, and a finite life- 
time, Li, from planning to retirement. The total capacity for technology % at 
time * is then {g\ + s-~Ai). 

Demand for electricity may come in k different modes, and the realization 
of the random demand in each mode must be met at each time stage. There- 
fore, if we let y{j be the production of electricity in mode j from technology i 
and let dj be the random demand variable for mode j electricity, we require 

E ̂ . = d|,   j = l,...,k,   t = l,...,N. 
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A production balance yields 

k 

i=i 

With the constraints listed so far, the problem does not have relatively 
complete recourse. To give it such, Louveaux and Smeers [11] add an addi- 
tional constraint2. They assume there is a technology, which is always called 
technology n, which can always be called upon to meet demand in an imme- 
diate way. Therefore An is always zero. Typically, the investment cost for 
technology n is high. To simulate purchased electricity, one may simply let 
the lifetime L„ = 1. The added constraint is Jn 

Ontfn + 4) > E dJ " E °* W + S^_Ai) '     * = 1> ' • ■  > W■ (16) 
3=1 1 

The objective is to minimize the expected value of the future cost, as 
represented by the operating and investment costs. The random variable 
is made up of the demands (di,... ,dn), and the costs (ci,... ,cn) and 

(qi,--- >qn)- 

4.2    Problem statement 

We have the following definitions: 

n = number of available technologies (index i) 

k = number of modes of electricity demand (index j) 

N = number of time stages (index t) 

g\ = capacity of i to exist at time t, decided upon before t = 1 

x\ — new capacity of i, decided at time t > 0 

s\ = total capacity, both actual and on order, planned after t = 0 

c[ = unit investment cost of i at time t 

q* = unit production cost of i at time t 

cti = availability factor for i 

2Constraint (16) is not in exactly the same form as in [11]. We have changed it, so that 
x\ may reflect electricity purchased from the so-called grid. 
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Li = life of i, from planning to retirement 

Aj = construction time for % 

dj = electricity demand in mode j at time t 

yj = production rate from % for mode j at time t 

Tj = duration of mode j at time t 

£* = random variable whose elements are {dj,C;,q;, Vi, j,t}. 

We are given all elements of g, T, a, L, and A, with An = 0. The problem3 

is to choose s, x, and y to 

minimize     E 
t=i i=i \ j=i 

subject to    s] = x\ 

s • = s: 
t-"t-l+x\-xtrLi,   i = l,...,n,   t = 2,...,N 

JZyh<ai(9l + s^%   i = l,...,n 
3=1 

«n(^+o>EdJ-Efl*w+a'"A<)' *=i---.tf 
i4^.>0,   i = l,...,n>   t = l,...,N,   j = l,...,k. s, 

4.3    Numerical results 

Louveaux and Smeers [11] present a two-stage example, with k = 3 operating 
modes and n = 4 available technologies. Their example differs from their 
general problem development in several ways. There is no immediate source 
of emergency electricity, as A* is set to 1 for all i. Additionally, there is a 
budget constraint of 120 in stage 1. Also, c and q are not stochastic. All of 
the parameters are shown in Table 4.3. 

3The term x\ in the objective function in (17) is written as s\ in [11]. We believe this 
to be a typographical error in [11]. 
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Note that x2 = 0 and y1 = 0, and that s* = xl. Here £ = (3, 5,7) with 
probabilities (0.3,0.4,0.3), respectively. Also note that with all technologies 
having a construction delay of 1, x2 should be zero. If the world is ending, 
there's no reason to build a power plant. To force this condition, c2 may be 
chosen to be any positive vector. Therefore, the problem may be reduced to 

minimize 

lOzi + 7x2 + 16x3 + 6z4 + E [40yn + 45y2i + 32y31 + 55y4i 
i 

+ 24y12 + 27y22 + 19.2y32 + 33y42 

+4y13 + 4.5?/23 + 3.2j/33 + 5.5y43] 

subject to   Y,t=i 2/ii = £ 

E?=i va =3 

Et=i Va = 2 
Et=i ** >12 

lOxi + 7z2 + 16x3 + 6x4 < 120 
x,y > 0. 

EL 2/ij < &i 
E^=i V2j < x2 

E|=l 2/3j < x3 

Ej=l 2/4j < *4 

Louveaux and Smeers [11] report the optimal solution to be 

-iT 

x = 
8      10 
3'   'Y' 

with an objective value of 381.853. 

4.4    Notational reconciliation 

We make several changes to problem (17) to facilitate its transition into the 
format of problem (1). We specify c], qj, and d) to be deterministic. Further, 
we force Li to be a number larger than N for i ^ n, and Ln := 1. Also, let 

1    if i ^ n 

0   if i = n 
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n 4 
k k 
N 2 
91 

92 

[0,0,0,0]' 
[0,0,0,0]T 

c1 

c2 
[10,7,16,6]' 
[1,1,1,1]T 

q1 

q2 

[0,0,0,0]' 
[4,4.5,3.2,5.5]T 

a [1,1,1,1]' 
L [2,2,2,2]' 
A [1,1,1,1]' 
d1 

d2 
[0,0,0]' 
[£,3,2]T 

T1 

T2 
[1,1,1]' 
[10,6,1]T 

With these restrictions, we let 

x\ 

x n 
<?* 

xt :-- 

4 
y\i Ct 

0 

Vnk 

A 
Vln-'fc 

zr. 
W 

0 
0 
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where z\ and w1 are slack variables. For t = 1,2,... , JV, let 

A,:= 

 rnxn rnxn 

nkxn r\kxn 

n(n—l)xn 
nnxn u 

0 

nnx(nk) nnxn nnxl 

A c\kxn nfcxl 

A jnxn nnxl   , 

nlx(nfc) nlxn _i 

where 

and 

A ■= r T^** T-^ xfc rfcxfc   "1   g_ pkx(nk) 

A 

1lxra  nlxn 

nlxn  Ilxn 

nlxn  nlxn 

nlxn 

nlxn 

1 lxn 

Additionally, for t = 2,3,... , N, let 

o(*- l)xn 

cn 
fcxn 0 

nnxn 

nlxn 

_jnxn r\nx(nk) nnxn n 

nkxn nfcx(nfc) ntxn n 

'T' r\nx(nk) nnxn n 

'fi nlx(nA;) nlxn n 

where 

T:= 

"Öl 

-a2 

"«71—1 

and 

f := f oi   a2 an_i    0 
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Finally, letting 

bt:= 

nnxl 

dL 
«iff* 

«nPn 

E-=1d]-EL^ 
we have put the problem into the format of (1). 
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5    Selecting currency options 

Due to Klaassen, Shapiro, and Spitz [10] 
(Multistage, non-stair step, linear stochastic problem) 

5.1    Description 

The situation described by Klaassen, Shapiro, and Spitz [10] involves a U. S. 
multi-national corporation (MNC), which has significant forecasted revenues 
in a foreign currency (FC). If the exchange rate, S (SUS/FC), goes down, 
the MNC would face declining revenue versus the forecast. To protect, or 
hedge, against this undesirable possibility, the MNC may choose to purchase 
options which guarantee a certain exchange rate at some point in the future. 
The guaranteed exchange rate is called the strike price, E. 

The current time is given the value t = 0, and the time at which the 
forecasted revenue will be realized is t = T. The amount of said revenue 
is assumed to be known with certainty, and is scaled to be 1 FC. At times 
t = 0,1,... ,T — 1, the MNC may decide to purchase any of the available 
options. These options mature at time t = T. There are a total of J specific 
options packages available for purchase, each with a different strike price. 

Of course, the exchange rates for t = 1,2,... , T are unknown at time t = 
0, but a suitable probability distribution can be constructed. We enumerate 
the possible exchange rate values at each time t as Si, 5|,... , Sj**, for t = 
0,1,... ,T. Then the set of scenarios 

{sequences s = {S0, Su ... , ST) ■ 1 < St < Nt,   Vt = 1,2,... , T}, 

is the set of all possible realizations of a random variable s = (S0, Si,... , ST). 
Thus, the cardinality of S is Y^=0Nt. Each realization scenario s specifies 
the exchange rate at each time step, and has an associated probability, ps. 
For scenario s G S, we denote by st the partial realization (S0, Si,... ,St). 

The decision to purchase options at any time t will depend on the current 
exchange rate, and on the type and quantity of options previously purchased. 
This, in turn, depends on historical exchange rates. Therefore, the decision 
variable XStj is the amount of option j purchased at time t, based on the 
partial realization st = (So, Si... ,St). This purchase costs PStj per scaled 
unit of currency. 
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Because decisions to purchase options are only available through time 
T - 1, there is no decision to be made at time T. This allows the constraints 
associated with time T to be rolled into time T - 1. 

For each exchange rate scenario s G S, the MNC must specify an ac- 
ceptable effective exchange rate, Qs, which would include effects of options 
purchased as well as the actual terminal exchange rate ST. This leads to the 
constraint 

T-l    J 
,T-t. sT+EE^H{£j_ST'0}"f1+^   M-Qs' VsG5' 

(18) 

where iuSt
s is the U.S. interest rate at time t for partial scenario st. The left 

side of inequality (18) includes the payoff from options which are active at 
ST as well as the discounted cost of all options purchased. Since Qs is a 
function of random variable ST, it is random as well. 

Note that the ST in (18) implies that these constraints are in the time 
stage associated with time T. However, there are no time T decision vari- 
ables, so we can write these constraints in the time T-l stage. At that 
stage, ST is "still" random, as is PSTJ. So, the only stage in which constraint 
(18) occurs is the stage associated with time T-l, and moreover, there are 
NT of these constraints. 

A further restriction ensures that the MNC does not venture into the 
realm of foreign currency speculation. That is, the MNC should only be able 
to purchase options to cover a maximum of 100% of the forecasted revenues. 
This gives the constraint 

x:x>^-<iyses- (i9) 
t=0 j=l 

The objective of this exercise is to minimize the expected cost of all 
options purchased: 

Z2 XsojpsQj + E 
J'=I 

t=l   V-L+^t   /    j=l 

The parameters i^f must be estimated, and for each realization St of St, 
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the coefficient PStj is calculated by the following formula, given in [10]: 

Psä ■= (1 - ci) 

iUH
S{T-t)} 

- (1 - 02) 
3-K°(r-t)] 

(20) 

where 

d :=iV 

c2:=N 

HEi/St) + [«s - ijc - (T - t) (f) 

VtVT~^t 

and V* is the volatility of the exchange rate, as measured by the instantaneous 
standard deviation of the spot rate as a percentage of the current spot rate. 
Here N{x} is the cumulative standard normal distribution function. The 
foreign interest rate, ift

c is calculated by 

iFCm=St{l + i^) 
*«   •      E [St+1|St]       ' 

where the term in the denominator is a conditional expected value. 

5.2    Problem statement 

Given all elements of ius, V, and E, and given a discrete probability dis- 
tribution for s and corresponding minimum effective exchange rates Qs, we 
calculate the value of each PStj from (20). Then the problem is to 
minimize 

7 . XSojPSoj + E 
7=1 

T-l   ,      x      y   J 

Z-> I 1 4. jUS J   Z^ XstjPstj 

subject to 

r-i  J 

£X>stj<l VseS 
t=0 j=\ 
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r-i  j 
ST

 + E E X^ [max{^ - ST, 0} - (1 + i™)T~t P,ti] > Q*>   Vs e 5 

t=o j=l 

Xstj > 0 Vj = 1,... , J; i = 0,1,... , T; s € <S. 

5.3    Numerical results 

Klaassen, Shapiro and Spitz [10] present a four stage (T = 4) example, with 
ius = 0.10 and V = 0.11 for all time periods and scenarios. At time stages 
0,1,2, and 3, ten different options are available, with strike prices 

(£i, E2,... , Ew) = (0.44,0.50,0.57,0.63,0.70,0.76,0.83,0.89,0.96,1.02). 

The scenario tree for the exchange rate St is given in Figure 5.3. Each 
branch of the tree has equal probability. Therefore we have the following 
probabilities: 

PSQ = 1 

Pai =    1/3,    VSi, 

PS2 =   1/9,   Vs2, 

Ps3 =   1/27,   V53, 

Psi =   1/81,   Vs4. 

The minimum acceptable effective exchange rates, Qs are shown in Table 
4, for each complete scenario. Results are given in Table 5. Results for 
different values of Qs, ius and V are also given in [10]. 

5.4    Notational reconciliation 

This problem does not fit into form (1), because the last stage (that associ- 
ated with time T-l) contains constraints of the form (18). These constraints 
contain all the decision variables XStj, not just XST_2j. Therefore, we need 
"T-type" matrices to connect not only time T - 1 to time T - 2, but also 
time T - 1 to each time t < T - 1. We denote such matrices TTt- 
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Table 4: Minimum acceptable effective exchange rates 

scenario (t = 4) Target Exchange Rates Qs 

1 0.407 
2-5 0.416 
6-15 0.423 
16-31 0.429 
32-50 0.444 
51-66 0.466 
67-76 0.494 
77-80 0.527 

81 0.564 

In fact, the speculation constraint (19) also contains all the decision vari- 
ables. However, with a trick, we can make these constraints fit into the stair 
step form of (1). We create a new variable Xzt and introduce the constraints 

j 

3=1 

and 

Xzt — -Xz(t-i) + / jXstji 
3=1 

Constraint (19) then may be written 

t = 1,2,... ,T-2. 

Xz(T-2) + } jXsr^j < 1. 

With these definitions, we can define, for t — 0,1,... , T — 2, 

xt+i := 

XSt\ 

XStJ 
Xzt 

,   ct+1:=[l/(l + zf)r 

P«ti 

0 

(21) 
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Table 5: Results for Klaassen, Shapiro, and Spitz [10] 
All nonzero option purchases, XStj are shown.    Optimal objective value: 
0.1057 

Option strike prices 
Year Scenario 0.44 0.50 0.57 0.63 0.70 0.76 0.83 0.89 0.96 1.02 

2 1 0.03 0.47 
2 0.04 

3 1 0.09 
3 0.49 

4 3 0.0004 0.09 
4 0.06 
7 0.21 
9 0.31 0.25 
10 0.56 0.03 

for i = 0,1,... ,T-2, 

At+1:= [ -1    •••    -1    1 ], bt+1:=0ER, 

and fort = 2,3... ,T-1, 

Tt(t_1):=[0   •••   0   -l]6llx(J+1). 

In the last stage, that is the stage associated with time T — 1, we will use 
-XZ(T-I) 

as a slack variable in (21). 
In addition, we will need NT surplus variables yk, for k = 1,2,... ,NT- 

That is because, in the final stage we also have the NT constraints (18). For 
k = 1,2,... ,NT, define 

lstjk := max {Ej - STk, 0} - (l + i^f"* PStj,   t = 0,...,T-l, 
j = 1,... , J, 

where Sxk is realization k of Sr, given a partial realization ST_I. Note that 
STk is random (for t < T — 1), because it is dependent on sr_i. 

Let 

-T(i+1) 

0 0 
Tstii      7**21 

7stl2 7st22 

0       r(t) 
IstJl 0 

7StJ2      0 

lstlNT     lst2NT     • • •    lstJNT       0 
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for t = 0,l,... ,T- 2, where 

r(t) := 

The matrix A^ is defined by 

1    t=T-2 

0   otherwise. 

1 1 1 1 

7«T-lH 7sT_i21       • • •        Isr-lJl 0 

7«r-il2 7sT_i22       * " -       JsT-iJ2 u 

JST-IINT     1ST-I2NT     ■ ■ ■    JST-IJNT     0 

and the right hand side for this stage is 

1 
Qsl — STI 

Qs2 — S^2 

QsNT — £>TNT 

The decision and cost vectors for the final stage are 

XST_1i 

XST_1J 

XZT 

Vi 
2/2 

yj 

-I JxJ 

XT ,   cT l/(l+C) 
T-l 

rST-ll 

"sT-iJ 
0 
0 
0 

0 

With all of the definitions above, we have transformed the problem into 
a familiar format. It is a non-stair step version of (MSSLP), 

minimize  Z(x\) := cjxi + Q.2(xi) 
subject to A\Xi = &i 

xi > 0,   xiE W11, 
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where 

Qt(xt-i):=        E        [Qt(zt-i,Ct,bt,At,Tt)] 
{ct,bt,At,Tt} 

Qt{xt-i,ct,bt,At,Tt(t-i)) ■= 

xt) : Atxt = bt- Tt(t-i)* 

t = 2,3,... ,JV-1, 

inf {cjxt + Qt+i(xt) : Atxt = bt- Tt{t-i)Xt-u xt > 0} 
xtGKnt 

Qjv(z;v-i) := E [Qjv(^Ar-i,cN,bN,AN, 
{cN,bN,AN,TN1,TN2 

TN(N-1)} 

TNI, TN2, • • •  , TN(N-I))] , 

and 

QN(xN-i,CN,bN,AN,TNi,TN2,... ,TJV(JV_I)) := 
N-l 

inf   {clxN : ANxN = bN - V] TNtxt, xt > 0}. 
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Key 

0.56 

si 

0.47 

0.52 

0.57 

0.43 

0.46 
2 
3 

0.49 

4 
5 
6 

0.55 
7 
8 

0.61 

0.37 

0.61 
U.bö 

77-79 
80 27 

0.68 
81 
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6    Financial planning model 

Due to Carino and Ziemba [4, 3] 
(Multistage, linear stochastic problem) 

6.1    Description 

Carino and Ziemba [4, 3] describe a model created for the Yasuda Fire and 
Marine Insurance Co., Ltd. (Yasuda Kasai) of Tokyo by the Frank Russell 
Company (Russell) of Takoma, Washington. The model is a comprehen- 
sive investment, liability, and risk planning tool. It is a multistage linear 
stochastic model with a steady-state condition imposed on the last stage. 

The complexity of the model is such that it cannot be completely de- 
scribed in article format. The model presented here is therefore a simplifica- 
tion of the original [4], although it is much more detailed than the abbreviated 
model presented in an earlier paper [2, Appendix]. 

Yasuda Kasai offers many types of insurance policies, which differ in struc- 
ture and in regulatory treatment. One type of policy is a traditional, non- 
savings insurance policy. Premiums from this type of policy go to the Ya- 
suda Kasai general account. Other policies are called savings policies. These 
policies are really two policies in one, with part of the premium paying for 
insurance and the rest constituting a deposit for savings. The insurance por- 
tion of the premium goes into the general account, and the rest goes into 
one of many savings accounts. The savings accounts are separated based 
on regulations, but they are treated the same in this model. Therefore, one 
savings account is included in this model. 

The general account is divided into a general allocatable account and 
a non-allocatable exogenous account. Funds in the exogenous account may 
not be invested. In this problem description, the superscript S will refer 
to quantities relating to the savings account, while G and E will refer to 
those relating to the general allocatable and exogenous accounts, respectively 
Define Vf, Vt

G, and Vf as the market value of the savings, general and 
exogenous accounts, respectively, at the end of period t. 

Fund allocations are not only classified by account, they are also classi- 
fied by investment type and asset class. The investment type indicates how 
the funds are invested. Money in the savings and general accounts may be 
invested either directly (D) or indirectly. There are three possible indirect 
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investment types: tokkin funds (T), capital to foreign subsidiaries (C), and 
loans to foreign subsidiaries (L). So, the four investment types are D, T, C 
and L. 

In contrast, there are many asset classes, such as domestic bonds, foreign 
equity, and real estate. In theory, each combination of account, investment 
type, and asset class may have its own fund allocation. However, some of the 
combinations are prohibited by regulations. All of the permissible allocations 
are indexed, and Xnt is defined as the allocation of funds to combination n 
at the end of time stage t. The classifications are used in quite a flexible way, 
so that n € loans means the set of indexes for all combinations with an asset 
class which can be described as a loan, and n E S is the set of indexes for 
all combinations involving the savings account. Therefore the market value 
of the savings account can be expressed by the constraint 

Vt
s-J2Xnt = 0- (22) 

nes 

The market value of the general account is written similarly, except that 
it includes vf, the surplus income in the general account. The constraint is 
therefore 

Vt
G-Y^Xnt~V? = 0. 

neG 

The random variables in this model have dependence on various rates of 
return and other company projections. They are defined in Table 6. Each 
has a discrete probability distribution. 

The savings and general accounts are modeled by several balance and flow 
equations. For example, investment income A+i is defined, for the savings 
account, by 

-^+1 :=   Z^  RInt+1-Xnt +  2_^ (RInt+1 + RPnt+l)^nt ~ IGt+1, 
neSD neSI 

and for the general account by 

Dt+\  :=   2_^   ^-nt+l^nt +  2_^ (RInt+1 + RPnt+l)^ni ~ IGt+1. 
neGD neGI 

Here, SD is the set of indices corresponding to direct type allocations from 
the savings account, SI is the set corresponding to indirect allocations from 
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Table 6: Random variables in Rüssel-Yasuda Kasai model 

R-Int+l income return of allocation n from the end of t to the 
end of t + 1 

R-Pnt+1 price return of allocation n from the end of t to the end 
ofi + 1 

gt+1 interest rate credited to policies from the end of t to the 
end of t + 1 

Ft+i deposit inflow from the end of t to the end of t + 1 

Pt+i principal payments from the end of t to the end of t + 1 

It-fi interest payments from the end of t to the end of t + 1 
Lt total reserve liability at the end of t 
Nt interest portion of Lt 

IGt+i income gap resulting from the difference between current 
market yields and existing loan portfolio cash flows 

the savings account, and similarly for GD and GI from the general account. 
One of the properties of the indirect investment types is that all price returns 
are translated into income. This is not the case for the direct investment type. 
Therefore, capital gain 

and 

Gt+i ERP 
nt+l^n«, 

neSD 

£m> nt+1-Xrati 
neGD 

includes the price return from direct investments. 
Let ßf be the income accumulated in the savings account through the 

end of t, and wf be the amount transfered to the savings account from the 
general account at the end of t. If vf is the amount transfered from the 
savings account to the general account at the end of t, then 

B^ = Bf + Ds 
h+i m It+i+™f+i-<i- 

The transfers, wf and vf, from and to the general account, are established 
as slack variables in a constraint. This constraint expresses the desire to keep 
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accumulated income Bf+1 greater than accrued interest liability Nf+1. Since 
Nf+1 = Nf + gf+iLf ~~ It+D tne constraint is 

Bs
t + Df+1 + wf+1 - vf+1 = Nt

s + gt
s
+1Lt

s. 

The excess accumulated income, vf+1, is in general good, because it con- 
tributes to income before taxes. This constraint only occurs when t + 1 is a 
fiscal year-end period. 

In addition to the income constraint, there is a reserve constraint, which 
measures the total reserve shortfall zf+l or surplus qf+l. These are established 
by 

vt
s + G?+1 + A+i + 4i - 4 = (1 + StS

+i)LtS- 

A value of zf+1 > 0 represents the undesirable situation where the income 
cannot meet the required liability reserve. No funds need be transfered, but 
a penalty is assigned in the objective. 

Another constraint, the cash flow constraint, addresses the unlikely event 
that net pay outs from the savings account, Pf+1 -1- lf+1 — Ff+1, exceed the 
market value of the savings account itself. A shortfall yf+1 would require a 
transfer from the general account, while the surplus uf+1 is a slack variable. 
The constraint is expressed as 

V? + Gf+1 + A+i + <i - »&i + Vt+i ~ <i = PtS
+i + It+i - Ft

s
+1.   (23) 

Any surplus from constraint (23) is equal to the new market value of the 
savings account: 

Let Bf+1 represent the income accumulated in the general account from 
the beginning of the fiscal year to the beginning of t + 2. Then 

G JO ift + lisa year-end stage, 
i+1 "~ |j5f + Df     otherwise, 

since the beginning of the fiscal year is at the beginning of t + 2. 
Nonnegative income before taxes Yt+i includes any income from the gen- 

eral account, and any transfers between the general and savings accounts. 
The calculation 

Yt+l - st+1 = Bf + Df+l + vf+1 - w?+1 
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is made for fiscal year-end stages t + 1 only. Here, sm is the non-positive 
income, should such a dreadful thing occur. 

Of course, income should be sufficient to pay dividends to shareholders 
and taxes. To encourage such outcomes, let rm be an income target, vf+l 

be the income in excess of Tt+1, and wf+l be the shortfall. The objective 
function will include wf+1, along with a cost penalty, and any vf+1 > 0 will 
contribute directly to net worth according to (22). The required income 
constraint is 

Yt+i - st+i + wt+1 - vt+1 = rt+i. 

The amount wf+l will need to be transferred from the exogenous account. 
The net worth of the company before taxes and shareholder dividends is 

qf+l. It is defined by the constraint 

Vt
E + Vt

G + G?+1 + A+i + Qt+i - 4i + 4i - <fii = Lt, 

where zf+l represents a negative net worth, a dire situation. 
Cash flow must also be balanced in the general account. Taxes are as- 

sumed to be a constant r times income before taxes. Dividend payments to 
shareholders are included in P?+1. Therefore, we have the constraint 

Vt
G + Gf+l + A+i - i-lWi + vf+1 - wf+1 - yf+1 + wf+1 +. 

yf+1-Wf+1=Pt
G

+1-Ft
G

+1. 

A positive value for yf+l would be very serious, as that amount would have 
to be transferred from the exogenous account to pay all the bills. The excess 
uf+1 is, as with the savings account, a slack variable which represents the 
accumulated market value of the general account. So, 

VG  -vG 

The accumulation constraint for the exogenous account includes kf+1, the 
projected increase in the exogenous account: 

VE    _ VE _     G     _    G      ,   kE Vt+1 — Vt Wt+1       Vt+1 + Kt+1 ■ 

In addition to the flow, income and accumulation constraints, there are 
many other constraints in the model by Carifio and Ziemba [4]. These con- 
straints find their origins in external and internal regulations and policies. 
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For example, since loans are a particularly illiquid asset class, an internal 
policy limits the change in allocations to loan asset investments from one 
period to the next. With lb and ub being constants defined by the policy, the 
constraint 

lb(l + RInt+i + RPnt+i)Xnt < Xnt+1 < 

«6(1 + RInt+i + RPnt+i)Xnt,   n E loans 

is added to the model. 
The objective is to maximize the market value of the accounts at time 

T and minimize the costs involved with shortfalls, while meeting all the 
constraints. Let c^t, c^t, c

s
zt, c% c%, and <£ be the cost parameters associated 

with shortfalls w?,yf,zf,wf,zf, and yf, respectively. Let 

„s „s JG „,,G <3 „G G„,G Ct := cswtw
s

t + csyty
s

t + c°ztz? + c^< + c^z? + c^y\ 

Then the objective is to minimize the expected value 

E -V$ - V° - VT
E + ^(1 + jf^Ct + aCf 

t=i 

where 7 is the discount factor, the function N(t, T) gives the number of years 
from stage t to stage T, a is the discount factor for the end-effects period, 
and Cf is the cost of shortfalls for the end-effects stage. 

6.2    Problem statement 

Given constants lb,ub,T,kf, and Tt, costs and given discrete distributions 
for the set of random variables 

R := {RInt, RPnt, IGf, Ft
s, Pt

s, It
s, gt

s, Lt
s, IGt

G, Ft
G, Pt

G : 

t = 1,2,... ,T;for all n}, 

the problem is to 

minimize      E 
R 

subject to 

-V* - V° - VT
E + J2(l + i)NMCl + aCf 

t=2 

(24) 

nes 
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A+l =   z2i  ^-nt+l-^n* + 2_^ (RInt+1 + RPnt+1 )-Xnt - IGt+1 

Df+l =   ^J   RInt+iX„t +  2_j (R-Int+1 + RPnt+l)^nt ~ IGt+1 

n£GD neGI 

Gt+1 =   2_^ R'Pnt+l^nt 
nGSD 

^t+1 =   Z-~i  •^'Pnt+l^nt 
nGGD 

£?f+1 = Bf + A+i - It+i + u>?+i - vf+i 
Bf + A+i + <i - «g.! = Nt

s + gt
s
+1Lt

s 

V* + Gf+1 + A+i + 4i - &i = (! + St+i)Lt 
V? + Gf+1 + Ds

t+l + ws
t+l - <x + yst+l - us

t+l = Pf+1 + It
s
+1 - Ft

s
+1   (25) 

Vf+l = us
t+l (26) 

G   _ Jo if t +1 is a year-end stage,        ■        .    > 
4+1 _ |£f + of     otherwise, 

rm - st+i = BG
 + DG

+1 + vf+1 - wf+1 

Yt+1 - st+i + w?+l - ug_x = rt+i 

vf + vt
G + eg.! + A+I + Ai - 4i + 4i - <fii = LtG 

Vt
G + Gf+1 + DG

+l - rYt+1 + <! - wf+1 - yst+l + wG
+1 + 

V?+r ~ «S-i = Pg-i - Ft
G

+1 (28) 

Vt
G

+1 = uG
+1 (29) 

V2x = Vt
E - wf+1 - yG

+1 + fcf+1 

J6(l + RInt+1 + KPnt+1)Xnt < Xnt+1 < 

ub{\ + RI„t+i + HPnt+1)Xnt,   ne loans       (30) 

Xnt, wf, vstz
s

t, qf, yf, us
t, Yt, st, w

G, vG, zG, qG, yG, uG > 0. 
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6.3 Numerical results 

The model described here is too complex for us to create empirical data at 
this time. Further, the original creators of the model [4, 3] did not provide 
specific problem data. 

6.4 Notational reconciliation 

In order to put this problem in the notation of (1), we make a few changes 
to the problem: 

1. Assume each period is a year-end stage. This assumption is not nec- 
essary, but we are required to state which stages are year-end, and 
which are not. The result of this supposition is the elimination from 
the problem of the variable Bf and the equation (27). 

2. The end-effects stage is eliminated. This eliminates the term aCj from 
the objective. 

3. Equations (26) and (29) are eliminated by substituting V for u in equa- 
tions (25) and (28). 

4. The conditions (30) constraining the loans are eliminated. 

Order the number of accounts in any way, and let M be the number of 
accounts. That is, the index n runs from 1 to M. Define the vectors 

Xt:= 

Xu 
X-it 

X Mt 

RPt := 

RPit 
RP2t 

RP Mt 

and 

RI t •- 

Rlit 
RI2t 

RI Mt 
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Let A e EMxM be the diagonal matrix defined for sets 
$e{S,G,D,I}by 

(A% 
1    if account j is in set $ 

0   otherwise. 

Then we may express the sums from the problem statement in Section 
6.2 in matrix notation. For example, 

J2 Rlnt+At = (RIt+i)TAGAöXt. 
neGD 

To begin putting the problem into the notation of (1), set 

xi :=      Vf     ,     ci := u        ,      &i 

and 

Xi 1 r\Mxl 

v? ,     a := 0 

vf. 0 

0 
0 

An= 
(-llxMAs)   1   0 
(-llxMAG)   0   1 
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Then for t = 2,3,... ,T, define 

xt :-- 

A5 

Gf 

w; 

Vt 

G 
Ft 

°t 
wf 
y? 

Vt 

St 

, and ct 

(1 
(1 
(1 

(1 
(1 
(1 

nMxl 

0 
0 
0 

-6tT 
0 
0 

-7) 
-if 
-7) 

0 
0 

-5tT 
0 
0 

-7) 

T-t„S vwt 
trS 
cyt 

T-t„S 
■'zt 

7f- 
T-trG 

~wt 
-trG 

7)T-f4 
-5tT 

0 
0 

where 

StT ■ = 
1    if t = T 

0   otherwise. 

The remaining assignments necessary are 

At:=[Al   A?},       Tt:= [TS     TG 
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and 

bt:= 

0 
0 

-IGt
s 

-IGt
G 

0 
0 

-Is 

(N^+gfL^) 
((l + gf)LtS-i) 
(Pt

s + It
s-Ft

s) 
0 
r 

(PtG - Ft
G) 

kE 

where Af,A?,Tf, and If are defined in Figures 1, 2, 3 and 4, respectively. 

Figure 1: Array Af for Russell-Yasuda Kasai example 

A* — 

(_l(lxM >A5) 0 0 0 1 0 0 0 0 0 
(_I(IXM; AG) 0 0 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 1 (-1) 0 0 0 1 (-1) 0 0 
0 0 1 0 0 0 0 (-1) 1 0 

0 0 1 1 0 (-1) 0 0 0 1 

0 0 1 1 (-1) 0 (-1) 1 1 0 

0 0 0 0 0 0 (-1) 1 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 (-1) 
0 0 0 0 0 0 1 (-1) (-1) 0 

0 0 0 0 0 0 0 0 0 0 

42 



Figure 2: Array Af for Russell-Yasuda Kasai example 

AG ._ 

0 0 0 0 0 0 0 0 0 0 0 
0 0 1 (-1) 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 

(-1) 0 0 0 0 0 0 0 0 1 (-1) 
0 0 0 0 (-1) 1 0 0 0 1 (-1) 
1 1 0 (-1) 0 0 0 1 0 0 0 
1 1 (-1) 0 0 1 1 0 0 i-r) 0 
0 0 0 0 0 1 1 0 1 0 0 
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Figure 3: Array Tf for Russell-Yasuda Kasai example 

Tt
s:= 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
[-RIt

TAsAD 

(RIt + RPt)
TA5A/] 

0 0 0 0 0 0 0 0 0 

[-RIt
TAGAB 

(RIt + RPt)
TAGA7] 

0 0 0 0 0 0 0 0 0 

-RPt
TA5Aö 0 0 0 0 0 0 0 0 0 

-RPt
TAGAD 0 0 0 0 0 0 0 0 0 
0 (-1) 0 0 0 0 0 0 0 0 
0 (-1) 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
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Figure 4: Array Tt
G for Russell-Yasuda Kasai example 

T, G 

0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 (-1) 0 0 
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7    Design of batch chemical plants 

Due to Subrahmanyam, Pekny, and Reklaitis [17] 
(Multistage, mixed integer linear stochastic problem) 
/chem/chem. cor,/chem. tim,chem. sto 

7.1    Description 

Subrahmanyam, Pekny, and Reklaitis [17] describe the design of a batch type 
chemical plant to produce products for which we do not know the future 
demand. We present here only half of the problem given in [17], the "Design 
SuperProblem." 

We must decide how many plants to build, of what type, when to build 
them, and how to operate them. Therefore the problem has some integer 
decision variables. Let n,jt be the number of new units of equipment type 
j to come online in time stage t. This must take only integer values. The 
cumulative number of units of type j at time t is defined as 

t 

Njt:=^2nJT,   Mj,t. 
r=l 

The various plants can perform different tasks, which are indexed as i = 
1,... ,1. Certain plants can perform more than one task. Let Ij3**5 be the 
set of tasks from 1 to / which can be performed by a plant of type j, and let 
jequip ke ^ get 0f pjant types from 1 to J which can perform task i. 

We must decide which tasks to perform on which equipment during each 
time period. Let j/yt be the number of times task % is performed on equipment 
type j during time stage t. If pij is the processing time for task % with 
equipment type j, and if Ht is the length of stage t, then 

Y^  PijVijt < HtNju   Vj',1 
Ag. rtasks 

This constraint enforces the fact that time is limited in each stage. Something 
else which might limit the number of batches is the much feared operating 
expense budget. Let C° be the total operating budget per plant for time t, 
and let c°-4 be the operating expense incurred for using equipment type j to 
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perform task i in stage t. Then the operating expense constraint is 

E E <§tm<CtY,N*> V1 
j     jg/tasks j 

The material balance on the system includes inventory, production, con- 
sumption, sales, and purchasing effects. Let B^ be the amount of task i 
performed on plant type j in stage t, measured in somewhat arbitrary reac- 
tion units. If fSi is the stoichiometric ratio representing mass of resource s 
produced per unit of reaction i, then the amount of s produced in stage t is 

E   E   f»iBW- 
i     je/equip 

Note that fsi is negative if resource s is consumed in task i. The mass of 
resource s in inventory at the end of stage t is Ast, with maximum limit A™x. 
The material balance constraints are then 

Ast = As{t„1) + Y^   E   fsißijt - Qtt + Qst,   Vs>*> 

and 

A« < A??*,   Vs,t, 

where qs
st is the mass of resource s sold in stage t, and qb

st is that bought in 
stage t. 

The relationship between 5ljt and y^t is 

Bijt < rriijyijt,   Vi,j,t. 

Here, m^- is the capacity of equipment type j to perform task i, measured in 
units of reaction per batch. 

There are a couple ways to limit purchases.  One is to simply impose a 
limit, as in 

for some constant Qb
st. Another is to limit capital expenditures to not exceed 

a constant MCt, as in 

ECÄ+E^^MC<' Vi- 
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The symbol Cjt is the capital investment cost for a plant of type j in stage 
t. The term vb

st is the value of purchased resource s in stage t per unit mass. 
One of the random variables in this problem is the demand, Qgkt, for 

resource s at time t. The index k determines the scenario. The other random 
variable is v|kt, the price per unit mass of resource s sold at or below the 
demand level Q*kt in stage t. We define a new random variable by rskt := 

(Qskt) Vskt)- 
The recourse variables are qfkt, the amount of s sold in stage t which does 

not exceed demand, and qsJt, the amount which exceeds demand. Essentially, 
qs

s£t is given away, rather than sold, as no credit toward profit may be taken 
for this quantity. The recourse variables are limited by the equation 

and the inequality 

& = <& + <&> Vs>M> 

9.«<QLt,   Va,M. 

In some industries, it is important that the demand be met exactly. For 
such cases, define the variable 

( 1    if for each s, qfkt = Q*kt, 
Xht '■= \ 

I 0   otherwise. 

Then we can set a guarantee index Gt, to serve as the minimum number of 
scenarios for which the demand may be met exactly. We get the constraint 

Y2xkt>Gt,   Vt. 
k 

The objective function, 

4=1 

£(v2kt?& - vstQst) - Y^ ( ni(t+s)CJt + Yl c^tViJt 
s=l j=l 

is the net present value of the facilities, and includes potential income, capital 
expenditures and operating expense. It contains no first stage objective 
terms, and should obviously be maximized. Note that c°ijt = 0 if we cannot 
perform task i with equipment j. Here, 5 is the construction delay once the 
plant has been ordered. 
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7.2    Problem statement 
We are given a discrete probability distribution 

In addition, we require constants c°jt, v
b

st, Cju Pij, Ht, C°, fsu Q
b

sV A™**, rriij, 
Gu MCU and 5, and the index sets i1asks and I-qu[p. Then our goal is to 
maximize 

t=i I 

subject to 

s J   l i 

s=l i=l 

E  PV^J* - fft^'*'   V-7> * 
„■/^ rtasks 

E E cijtViß<ctJ2N^ Vi 

j   ie/'asks 

% = En^'   ^ 

(31) 

(32) 
T=l 

4st = A(t-i) + E   E   fsiBijt-QSst + Qbsv   VM 
i    »cre<iu,P ieJ? 

(33) 

^<^3",   Vs,t 

Bijt < mijUiju   Vi,j,i 

9lt = 9sw + &   Vs>M 

?£<<%*.   Vs.M 
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qb
st<Qb

st,   Va,t 

J2C^t + J2vbst1bst<MCt,   Vt (34) 

xkt=ll   if f°r eaCh S' qS"kt = Q*kt' (35) 
0   otherwise 

$>«>G*,   Vt (36) 
it 

Ast,<&,<&>0,   Vs.i 

&«£>0,   Va,M 

5yt>0,   Vi,j,t 

Njt, rijt, Vijt G Z+- 

7.3    Numerical results 

Subrahmanyam, Pekny, and Reklaitis [17] present a problem with 1 = 4 
tasks, S = 7 resources, J = 3 equipment types, T = 2 time stages, and 
K = 2 scenarios per stage. Operating costs are neglected, so c?-t = 0 for all 
cases, and (31) is removed from the problem. Also, the construction delay 6 
and constraints (34), (35), and (36) are not included in the problem. 

The parameters for the problem are shown in Tables 7, 8, 9, and 10. Note 
that resources 1 and 2 must be purchased, resources 4 and 7 are sold, and 
the remainder are intermediate resources. 

Additionally, 

H1 = H2 = 80 days, 
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Table 7: Probability distribution for random variables (demands not shown 
are zero) 

kt Pkt Q\kt Qlfkt VAkt V7kt 
11 0.4 0 0 51 70 
21 0.6 150 200 58 80 
12 0.4 0 0 50 71 
22 0.6 150 200 59 81 

Table 8: Parameters for purchased resources 

St Vbst Qbst 
11 23 200 
12 24 200 
21 25 250 
22 26 250 

Pll = P41 = Pl2 = P42 = P23 = P33 = 4, 

n tasks    rtasks 
— J2 {1,4}, 

and 

rtasks {2,3}. 

The optimal objective value stated in [17] is 3300, with optimal values of 
7V2i = 1 and JV3i = 1. 

The problem chem in our collection is an attempt at recreating this exam- 
ple. We have not been able to verify that we have succeeded in this attempt, 
as we have only run chem as a continuous model. The optimal objective value 
for chem as a continuous model is 13009.16667. 
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Table 9: Parameters for equipment types 

3 Cji Cj2 mijii 
1 2500 2600 100 
2 3000 3100 200 
3 2800 2900 150 

Table 10: Stoichiometric coefficients fs 

i\s 1 2 3 4 5 6 7 
1 -1 -1 1 0 0 0 0 
2 0 0 -1 1 1 0 0 
3 0 -1 0 0 -1 1 0 
4 0 0 0 0 0 -1 1 

7.4    Notational reconciliation 

For simplicity, equations (35) and (36) are removed from the problem, and 5 
is set to 0. The transition of notation is then quite straightforward. Define 
the diagonal matrix Af*8 e RIxI by 

3 I 0   otherwise. 

Then, we make the following definitions, and also introduce slack variables 

0 

1       2 7 
U , U , ... ,u'\ 

Pj 

Plj 

Plj 

p:= 

Pi 

P2 

0 PJ 

Vjt 

Vijt 

yijt 

yt ■= 

yjt 
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B 'jt 

Bijt 

Bijt 



Bt 

Blt 

Bjt 

Nt t ■- 

«!:= 

u it 

u St 

NJt 

i = 3, 5, 6;     u\ 

nt :-. 
nu 

njt 

u u 

u Jt 

ut 

nt 
4 
12t 

U Ut 

ro   — 
-Ijt 

L cijt J 

c°t:-- 
■-u 

-Jt 

Ct 

Qt 

Clt 

C jt 

Q 

! It At:= 
Alt 

ASt 

^max 

s 
lkt 

Q 
s 
Skt 

b ._ 
;    Qt-= 

Qbu 

Qb 
St 

A max 
A\t 

/(max 

J\t 

Jst 

<■-- 

Qt 

fs:-- 

s+ 

'lkt 

'Skt 

Qlkt 

Iskt 

tf := 

M:= 

Qu 

Qst 

if ■- 
Q\kt 

Qskt 

mn 
m2i 

mu 

/« 

F:= 

si 

fsl 

Fl " 

i^9 

;     Fs := fj [ A*!1"*8   A^8 

A tasks 

A tasks 

A tasks 
A tasks 

A tasks 

53 



Then, let 

xt :- 

Vt 
Nt 

nt 

At 

Bt 

if 

uxt 

«5 
ui 

and      c4 

QjXl 

-ct 
05xl 

Q/JXI 

QSXI 

vt
s 

05xl 

QjXl 

0 
QSXI 

Q/7X1 

05xl 

o5xl 

0 

(37) 

We assign At according to Figure 5. The vertical lines separate parts of 
the matrix according to (37). So, for example, the second partition of the 
matrix corresponds will be multiplied by Nt. All blanks are zero. Note that 
the double sum in equation (33) may be expressed as 

EV   f  R 

j  ie/?asks 

The transition matrix Tt is defined in Figure 6. There are only two 
nonzero entries. One is from (33), and the other is from (32), which may be 
rewritten 

Njt = Njt-i + n ■it- 

54 



Our transition to the notation of Problem (1) is complete if we set 

>t •— 

r\JxJ 

0 
r\JxJ 

QSXS 

A max 

QIJXIJ 

QSXS 

Qts 

Q\ 
MCt 

55 



03 

CO 
X 
a; 
bO 
Ö 

"S 
Ö 
CO 

fcuO 
■ i-H 

CO 

o 

ü 
S-l 

.O 

(-1 

tu 

fcuO 

'■n 
X 
■ri 

1 

X 
^3 
>-< 

1 

■n 
X 

X 
■ri 

1 

^3 
X 
■n 
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Figure 6: Array Tt for chemical design planning example 

Tt 

- ~ 

_ TJXJ 

_JSXS 

_ . 
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8    Energy and environmental planning 

Due to Fragniere [5] 
(Multistage, linear stochastic problem) 

/env_det.aggr 

/environ/env. cor,/env. tim, < 

/env.sto.imp 

/env.sto.loose 

/env.sto.lrge 

/env.sto.xlrge 

8.1    Description 

The model by Fragniere [5] assists the Canton of Geneva in planning its en- 
ergy supply infrastructure and policies. The model is based on the MARKAL 
(market allocation) model. This is quite an extensive model, containing a 
great degree of realism. Included is the possibility that emissions of green- 
house gases will be required to decrease. This possibility is expressed in a 
discrete random distribution. 

The model includes equilibrium constraints, capacity expansion constraints, 
demand constraints, production constraints, and environmental constraints. 
Energy is supplied by many different technologies, including hydro power, 
cogeneration, fossil fuels, urban waste incineration, and imported electricity. 
Demands are also classified by technology. Examples are electricity for in- 
dustrial use, gas furnaces in existing houses, and wood stoves in new houses. 
Variables expressed in upper case letters are decision variables. 

An energy balance may be performed on the supply grid, for each energy 
type. For types k which are neither electricity nor low temperature heat, the 
balance yields 

£    outki{t)Pi(t) +   ]T   outki(t)cfi(t)Ci(t) + Y^IMPks(t) 
-TCH ieDMD s 
~DMD 

>     Yl    inPki(t)Pi{t)+   Yl   irip^cfi^d^ + ^EXPUt), 
s 

\/keENC,VteT,    (38) 

i&TCH ieDMD 
i&DMD 
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where the variables and sets are defined in Table 11 and Table 12, respec- 
tively. Note that for i e DMD, the term d(t) refers to the installed delivery 
capacity, whereas for production type technologies, it refers to the installed 
production capacity. 

For electricity and low temperature (district) heat, the energy balances 
are 

V Y, Pizy(t) + Y,IMPELCszy(t) 
MELA 

>   ^2 inPELcA^QzyPiit) 
iePRC 

+   Y,   ^pELcS)cfi{t)fTmtyCi{t)+YEXPELCkgy{t) 
k 

+ v   E   eip^(t), VzeZ,VyeY,VteT, 
ieDMD 

ieSTG 
3y=n 

and 

7   Yl   PM>     Y    inPLTHAt)cfi(t)Ci(t)'52frJ®zV> 
ieHPL ieDMD yeY 

VzezyteT, 

respectively. 

Table 11: Variable definitions 

Pzy {*) 

PizV) 

Q(t) 
Miz{t) 

IMPk8(t) 
IMPELCszy(t) 

EXPks(t) 

the activity, or utilization, of technology i, in period t 
the production of electricity from technology i, in pe- 
riod t, season z, and part of the day y 
the production of low temperature heat from technol- 
ogy i, in period t, season z 
the total installed capacity of technology i in period t 
production lost due to regular maintenance of technol- 
ogy i in season z, period t 
imported energy of type k in period t, from source s 
imported electricity, from source s, in period t, season 
z, and part of the day y 
exported energy of type k in period t, to destination s 

(continued on the next page) 
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Variable definitions (continued) 
EXPELCszy(t) exported electricity, to destination s, in period t, sea- 

son z, and part of the day y 
OUtki(t) output of energy type k in period t, per unit activity 

from technology i £ DMD, or per unit capacity from 
ieDMD 

outik(t) fraction of demand technology i which supplies utility 
demand k G DM in period t 

inpki{t) input of energy type k in period t, per unit activity 
from technology i $ DMD, or per unit capacity from 
ieDMD 

cfi(t) mean utilization factor of the total installed capacity 
for technology i G DMD in period t 

Qzy the fraction of a year covered by season z, part of the 
day y 

3Ü) utility demand category j(i) G DM, for i G DMD 

Jrj(i)zy fraction of the utility demand from category j(i) which 
comes in season z, time of day y 

ei the electricity input required at night to produce one 
unit of electricity in the daytime from technology i G 
STG 

V efficiency coefficient for electrical distribution 

p efficiency coefficient for low temperature heat distri- 
bution 

7 efficiency coefficient for district  (low temperature) 
heat distribution 

h duration of equipment i, in time stages 
h{t) new capacity purchased for technology i, starting in 

period t 
residi(t) capacity which existed at the beginning of the opti- 

mization problem 
demandh (t) demand for utility k G DM in period t 
afi(t) availability factor of technology i in period t 
fOi the fraction of a year that technology i is lost for pro- 

duction, due to One unit of unavailability 
Ui conversion factor from units of capacity to units of 

production 
(continued on the next page) 
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Variable definitions (continued) 
er reserve capacity necessary to cover daily peak demand 

for electricity 
hr reserve capacity necessary to cover daily peak demand 

for low temperature heat 
pki(t) fraction of installed capacity for production technol- 

ogy i, available to satisfy peak demand in period t 
epki(t) fraction of electrical consumption for production tech- 

nology i, which corresponds to peak consumption in 
period t 

dfj(i)(t) fraction of capacity for demand technology i, which 
corresponds to the peak consumption in period t 

bl maximum fraction of nighttime electrical production 
from technologies i G BAS 

a annual discount rate 
n number of years per period 
invcosti(t) cost per unit investment in technology i, period t 
fixom,i(t) fixed annual operation and maintenance costs for tech- 

nology i, period t, per unit capacity 
varorrii(t) variable annual operation and maintenance costs, per 

unit production, for non-demand technology i, period 
t 
unit cost of energy type k, purchased from source s in costks(t) 
period t 

costELC,s{t) unit cost of electricity, purchased from source s in pe- 
riod t 

priceks(t) unit price of energy type k, sold to source s in period 
t 
unit price of electricity, sold to source s in period t priceks(t) 

co2i(t) carbon dioxide emissions per unit capacity, from tech- 
nology i, period t 

limitC02(t) limit imposed on carbon dioxide emissions in period t 

The capacity of each technology was either installed after the beginning 
of the optimization problem, or it was there from the beginning. From this, 
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Table 12: Set definitions 

ENC 

T 
TCH 
DMD 
DMD(k) 

DM 
Y 
Z 

ELA 
PRC 
STG 

HPL 

CON 

BAS 

C02 

the energy types, except electricity (ELC) and low 
temperature heat (LTH) 
time periods 
supply and demand technologies 
demand technologies 
demand technologies which can only supply utility de- 
mand k € DM 
utility demands 
parts of the day (d for daytime, n for nighttime) 
seasons of the year (w for winter, s for summer, i for 
intermediate) 
technologies that produce electricity 
energy production technologies 
technologies that effectively allow the storage of elec- 
tricity 
technologies  which  produce  low  temperature  heat 
(LTH) 
technologies which produce electricity and/or low tem- 
perature heat 
electrical production technologies which produce only 
at a steady rate, day and night 
technologies which emit carbon dioxide  

we get the constraint 

d(t)= J2 Ii(m)+residi(t),   ViGT,Vi. 

m=Max{i,H+i} 

We must meet the demand for each utility in each round. Thus, 

X^     Ci^ +       S      outik(t)Ci{t) > demandk(t), 

\/k£DM,VteT. 
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Of course, we cannot produce more than the capacity. For general pro- 
duction technologies, this constraint is 

Pitt) < afi{t)Ci(t),   Vz G PRCyt e T. 

For technologies that produce electricity, the production constraint is 

Pizy(t) + (—^—) < Uiqzy (1 - [1 - afi(t)] fOi) G{t), 
\qzd + Qzn/ 

Vi 6 ELAyz e Z,Vy e y,vt e T. 

The second term is the production lost due to maintenance. 
Similarly for technologies that produce low temperature heat, 

Piz{t) + Miz{t) < Ui(qzd + qzn) (1 - [1 - afi(t)] f0i) d(t), 
\/ieHPL,VzeZ,VteT.   ' 

The following constraint pertains to maintenance. 

J2MM > [l - a/i(*)][l - foi]uiCi{t),  Vz e CON,\/t e T. 
zez 

On any given day, the peak demand level is, of course, higher than the 
daily average demand. The capacity for production of electricity must be 
sufficient to cover peak demands, which occur during the day in both winter 
and summer. The constant er sets how much higher than daily average 
demand levels the peak can be. The peak constraint for electricity is 

V 
1 + er 

i€DMD x     qzd 

J2 UipkiMdit) + — J^IMPELdzdit) 
=ELA Qzd    s 

J2 inPELC,i(t)epki{t)Pi(t) + — Y1 EXPELdzd(t) 
iePRC Qzd   s 

+   J2   inpELc,i(t)elfm(t)cfi(t) i^r) GW' 

V^G {w,s},VteT. 
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The peak demand constraint for district heat is 

p      Y,  uiPki(t)Ci{t) > 

£   inpLTHMcM) (fr^dlfr^wn) CM,   VteT, 
* mi-» \ n i -f- ft  / 

1 + hr ieHPL 

ieDMD 

where hr is the analog to er for electricity. 
Some types of electrical production technologies, here called BAS, can 

only operate at a constant production level, day and night. We may desire 
to limit the percentage of production from such technologies, since they do 
not give hour to hour operation flexibility. The upper bound, bl is used in 
the following constraint: 

J2 P^) + Y,VIMPELCs*n(t) - EXPELCszn(t) 
ieBAS 

<bl J2 P^(t) + Y,vIMPELCszn(t) - EXPELCszn(t) 
ieELA s 

VzeZ,VteT. 

Fragniere [5] states that the production of greenhouse gases is limited, 
but we were unable to find an explicitly stated constraint. Therefore, we 
propose our own of the form 

J2 co2i(t)Ci(t) + 5 ^2 ^ Y, IMPELCszy(t) < limitCo2(0,    V* € T. 
ieC02 s    zeZ y€Y 

(39) 

The second term on the left hand side represents the possibility of imported 
electricity counting toward the C02 limit. Random <*(*) G (0,1) represents 
the probability of such a rule. Of course, 6(1) = 0 with probability one. 

The objective is to minimize capital and operating costs, which can be 
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expressed as 

teT K    ^     > ieTCH \m=l / 

£ (1 + aW'-1) 
teT v ' 

y~]  fixorrii(t)Ci(t) +  ^ varomi(t)Pi(t)+ 
LieTCH iePRC 

^2  ^2varomi(t)Piz(t) +  ^ EEvaromi(t)Pizy{t) + 
ieHPL z£Z ieELA zez yeY 

]T   J2costks(t)IMPks{t) + J2E EcostELCtS(t)IMPELCszy(t) 
keENC   s s    zeZ yeY 

J2   Y,priceks(t)EXPks(t)- 
keENC    s 

E E ^PriceELcAt)EXPELCszy(t) 
s    zeZyeY 

8.2    Problem statement 

We present a problem that is not as elaborate as that created by Fragniere [5]. 
It corresponds to the numerical examples given in the "Numerical examples" 
section. 
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Minimize 

Efl + l(t-D   E invcostm{t)+(J2(} + <*)1- 
teT { > ieTCH \m=l 

E h +   wt-i)     E  fixorm{t)Ci(t) +  E uoromi(t)Pi(t)+ 

ie# PL .zez ieSLA zez yeY 

£   Ecostks(t)IMPks(t) + EEEcostELC,(t)IMPELCaMy(t) 
keENC   s s    zez yeY 

53   ^przce^EXP^i) - 
keENC    s 

subject to 

J]    outki(t)Pi(t) +   E   o^fciWc/iWCi^ + ^/MP.^i) 
=TCF ieDMD s 
>:DMD 

>     E    *"P*i(*)p<(*) +   E   inpki(t)cfi(t)Ci(t)+J2EXPks(t), 
s 

VkeENC,VteT, 

ieTCH ieDMD 
i&DMD 

V E Pi*vW + J2lMPELCszy(t) 
.ieELA s 

+   E   ^PELc,i(t)cfi(t)frj{i)ZyCi(t) + YlEXPELCkgy(t) 

>    ]P    ^PELdi^zyPiit) 
iePRC 

ieDMD 

+ V   E    eipi*d(t),   VzeZ,VyeY,VteT, 
ieSTG 5y=n 

ieHPL ieDMD yeY 

VzeZ,\/teT, 
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d(t)= Yl Ii(m)+residi(t),   WeT,Vi, 
m=Max{i,t-ii+i} 

Ci(i) +      2^      outik(t)Ci(t) > demandk(t), 
ieDMD(k) ieDMD 

i<£DMD(k) 

\/keDM,vteT, 

Pi(t) < afi(t)d(t),   Vz e PRC, V« e T, 

*W*) + f     ^     ) < uiqzy (1 - [1 - a/,(i)] /<*) Ci(t), 
V Qzd + Qzn / 

Vi e £LA,Vz e ^,Vy e F,Vi e T, 

X)M«(*) ^ t1 - °/i WK1 - MRC^),  Vi e CON,\ft e T, 
zez 

V 
1 + er 

ieDMD N    Qzd 

Y, UiPki(t)Ci{t) + —J2IMPELCSZd(t) 
=ELA Qzd    s j 

J2 ™PELc,i(t)epki(t)Pi(t) + — J] EXPELCszd{t) 
iePRC ^zd    s 

Vze {w,s},VteT, 

^-r  Y UiPki(t)Ci{t) > p_ 
hr 

ieHPL 

£   inpLTH,i(t)cfi(t) (fr^d + fr^A Ci(t),   VieT, 
i€DMD Qwd   i   Qwn 
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E P^{t) + Y,rlIMPELCs*n(t) - EXPELCszn(t) 
ieBAS 

<bl E pi*n(t) + J2rlIMPELCszn(t) - EXPELCszn(t) 
,i€ELA s 

MzeZyteT, 

J2 coUt)Ci(t) + 5(t) E E E IMPELCszy{t) < limitco2(t),    Vt G T 
ieC02 s   zez yeY 

and for all £ G T, 

PS) > 0, V* e PRC,    IS) > 0, Vi e TCH, 
Ci(t) > 0, Vi G TCH,     Piz{t) > 0, Vz G #PL,V* G Z, 

F«y(*) > 0, Vz G £LA, V2 G Z, Vy G F,     /MPfcs(t) > 0, VA; G £iVCVs, 
IMPELCszy{t) > 0, Vs, Vz G Z, Vy G F,     EXPks{t) > 0, VA; G £iVCVs, 

EXPELCszy(t) > o,\/s,Vz ez,yye Y,    5(1) = 0. 

8.3    Numerical examples 

The problem created by Fragniere [5] for the Canton of Geneva is extremely 
large and complex, and the input data format is not SMPS. Therefore, we 
have created our own sample problems of this kind. The numbers in this 
example are based on the authors' judgment, not actual economic data. 

The example creates a situation similar to that experienced in the United 
States, where oil imports (OIL) are the largest source of energy. Other 
imports are coal (COL), natural gas (NGS), propane (PRO), nuclear fuel 
(NUF), and electricity (ELC). There are no exports in this example. 

The energy types allowed are electricity (ELC), gasoline (GAS), coal 
(COL), heating oil and diesel (HOL), natural gas (NGS), propane/LPG 
(LPG), jet fuel (JET), and nuclear fuel (NUC). When one unit of oil is 
imported, the following portions of hydrocarbon based energy types are as- 
sumed to be gained: 0.45 gasoline, 0.25 heating oil/diesel, 0.10 natural gas, 
0.10 jet fuel, and 0.10 propane/LPG. The inequalities of type (38) must take 
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this into account. For example, the inequality balancing natural gas is 

0.10JAfPoiL(*) + IMP^G > mpNGS,HNG(*)c/HNG(*)C,HNG(*) 
+ «npNGS,NEL(*)c/NEL(*)C!NEL(*)- 

The available technologies are listed in Table 16, along with their asso- 
ciated coefficients for the example problem. Other coefficients are listed in 
Table 13, Table 14 and Table 15. 

There are several two stage versions of this problem in the test set. 
They differ in how stochasticity is introduced. The problem envdoose, us- 
ing the stochastic file env.sto.loose, simply assumes very non-challenging 
(i.e. loose) C02 limits. The problem env:aggressive (env.sto.aggr) sets 
aggressive C02 limits. Each of these has five random realizations, and the 
parameter S(t) takes a value 0 with probability one. 

The problem env:import (env.sto.imp) uses the aggressive C02 lim- 
its, and, in addition, considers the possibility that imported electricity (IM- 
PELC) will be counted toward such limits in period two. That is, 6(2) takes 
a nonzero value with nonzero probability. This problem has fifteen random 
realizations. 

The problem envdarge (env.sto.lrge) builds on env.import by making 
random the costs of various energy sources. The number of realizations is 
8,232. The problem env.xlarge (env.sto.xlrge) is a larger version still, 
mostly to test distributed memory capabilities of the solver. 

Table 13: Example problem seasonal coefficients 

summer winter 
day    night day    night 

qzy Öm     0.40 Ö4Ö     0.60 
costELC      5.2      5.0 4.8      4.6 
frELC,zy    0.35    0.25 0.10     0.30 
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Table 14: Example problem demands 

k      d emandk{l) demandk(2) 

ELC 170 230 
HHO 30 30 
NG 15 25 

GAS 60 80 
LPG 3 3 
JET 10 20 

Table 15: Example problem coefficients 

a 0.05 
n 5 
V 0.80 

6HYD 0.10 
er 0.20 

COStoiL 0.8 
COStcOAL 0.7 

COSt-^Q 0.6 
COStpRo 0.7 
costjsruF 0.9 
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8.4    Notational reconciliation 

Because of the size of the problem, we reconcile only the problem from the 
Numerical examples section to the format of (1). In this section, we will use 
"ELI ... HYD" to denote the set of technologies listed in Table 16, in the 
order presented. We will also use "OIL ... ELC" to denote the imports, 
and "ELC ... JET" for the demands in Table 14. Additionally, "WD ... 
SN" will mean the sequence "WD, WN, SD, SN," and "CEL ... HYD" will 
stand for the sequence of electricity producers "CEL, NEL, NUL, HYD." 
These abbreviations will make our arrays smaller to print. 

We will also use the notation e{ to mean the unit vector in the ith direction 
from the space E12. 

For t — 1,2, make the following definitions: 

xt ■■= 

hu{t) 

luYDyt) 
CELIW 

CHYD (*) 

-PcEL,WD (t) 

-PCEL,SN(£) 

-fkYD,WD CO 

-PHYD,SN(^) 

IMPoiUt) 

JMPNUF(t) 
IMPELCWD(t) 

IMPELCsN(t) 

ct 

r(t)invcostEu(t) 

r(t)invcost}jYß(t) 
s(t)fixom-ELi(t) 

s(t)fixomuYo(t)_ 
s(t)varomCEh(t) 

s(t)varomcEh{t) 

s(t)varomEYD{t) 

s{t)varom^Y-o{t) 

s(t)cost0iL 

s(t)cOStuVF 

s(t)cOStEhC,-WD 

s(t)cOStEhC,SN 

72 



where r{t) := (1 + a)'^'^ and s(t) := ( ^(1 + a)1"™ j r{t)4 

Define the following matrices: 

mPGAS,CAR(*)c/cAB.(*)e5 
*npcOL,CEL(*)c/cEL(*)e7 + mpHOL,TRK(*)c/TRK(*)ei"c 

inpnoh,mio(t)cfuKo{t)eJ + «npNGs,NEL(i)c/NEL(^)e8 
BA(t) := 

,T 
10 
,T 

'el 
,T 

£5(t) := 

«npLPG)HLP (^)c/HLP {t)ej 
inp JET, AIR (*) C/AIR (*) 4 

»WPNUCNUL (^)C/NUL (*) e^i 

-0.45 0    0 0 0 0 
0 -10 0 0 0 

-0.25 0    0 0 0 0 
-0.10 0    0 0 0 0 
-0.10 0    0 0 0 0 
-0.10 0    0 0 0 0 

0 0    0   0-10 

BC{t) := -77 [ /4x4   /4x4   /4x4   J4x4],        BD(t) := -77 [/4x4] 

££(*) := 

*raPELC,ELl(*)c/ELl(*)./TELC,WD     ^ELC,ELD(Oc/ELD(0/rELC,WD 

WPELC,ELI(*)
C

/ELI (*)/^ELC,SN      WpELC,ELD (*)c/ELD (0/rELC,SN 

-»4x10 

ß^(t) := r?eHYD [ 04x12   /4x4 ] ,        BH(t) := - 

(ei + e2)
T 

(e3 + eio)T 

0T 

4Due to an error of the author's, r(t) and s(t) were miscalculated in the production 
of the SMPS files. The actual values used in the SMPS files were r(l) = s(l) = 1.0, 
r(2) = 1.914, and s(2) = 4.525. 
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BM := . 9WD /      * 

l, <?SD /      Z 

BN := [co2ELl ■ ■ • CO2HYD] 

BK 

WCEL<ZWDe7 

UCELQS^ 

MHYD9WDe12 

WHYD9SNe12 

&Jfc 

9WD/(<ZWD + <7WN) 

9WN/(<ZWD + <ZWN) 

9SD/(?SD + 9SN) 

9SN/(9SD + ?SN) 

££(£) := 
n 

1 + er 
-uCELPkcEL{t)e7- 

«NELP&NEL(*)es - ^NULP&NUL (t)en ~ «HYDP^HYD (<)ei2]   + 

„*      /,N  [ e//ELC,WD(^)/^ELC,WD/9WD       /• /,\ .T   , 
L    ■ei/ELC,SD(.tJ/T,ELC,SD/9SD     J 

*nPELC,ELD(*)eJ), 

and the random 

BP(i) := [ <J(*)   6{t)   5(t)   5(t) ] . 

Then, finally, we can assign At, for t = 1,2, and T2 in blocks. Let 

- 5A(t) BB(t) 
5£(i) (BC{t) + 5F(i)) BD(t) 

_^12xl2 Jl2xl2 

BE j 
BK Jl6xl6 

BL[t) BM 
BN BP 

74 



and 

" Q7X50 

Q4X50 

_J12X12 

Q6X50 

Q16X50 

Q2X50 

Q1X50 

We define the random right hand side as 

07 

04 

residEu{t) 

residEYD(t) 
—demandELc{t) 
—demandimo(t) 
—demand^Gs(t) 

bt := —demandcAsit) 
—demand^pait) 
—demand JET (t) 

bk 

h 
bk 

bk 
02 

limitCo2(£) 

If the user then appends slack variables in the blocks corresponding to BA(t), 
BE(t), BH(t), BK(t), BL(t) and BN{t), we will have the problem in the 
form of (1). 
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9    Network model for asset or liability man- 
agement 

Due to J. M. Mulvey and H. Vladimirou [15] 
See also Mulvey and Ruszczyriski [14]. 
(Two-stage, linear stochastic problem) 

{ /assets.sto.small 

/assets.sto.large 

9.1    Description 

The management of assets or liabilities can be looked at as a network prob- 
lem, where the asset categories are represented by nodes, and transactions 
are represented by arcs. The purchase or sale of an asset usually has fixed, 
deterministic associated costs, while the return on an investment from one 
stage to the next is usually unknown. 

Let the set of nodes be J\f, and let A be the set of arcs. There exists a set 
of terminal arcs T C A, over which the objective value will be calculated. 
Define the following notation: 

.Ai=the subset of arcs associated with deterministic multipliers 
and first stage decisions 

^42=:the subset of arcs associated with stochastic multipliers and 
first stage decisions 

,43=the subset of arcs associated with second stage decisions 
A/"i=the subset of nodes with deterministic balance equations 

£)+=the set of outgoing arcs at node n 
D~=the set of incoming arcs at node n 

,za=flow along arc a G A\ U A2 
2/a=flow along arc a G A3 
ra=multiplier for arc a £ A 
bn=supply or demand at node n G M 

Z0=lower bound for arc a £ A 
ua=upper bound for arc a G A. 

Then the problem statement follows simply from a material balance at 
each node. 
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9.2    Problem statement 

Given {ra : a E Ai}, {bn : n E M} and {(la, ua) : a £ A}, the problem is to 

^T   raza +   ^ £ 
aeAinT 

maximize 
{ra,bn} 

J2 r*^+ Yl r»y° 
.aeA2r\T aeA3nT 

subject to     ^2 zo. ~~ X/ r°-Za = bn' neAfi, 
aeDt aeD~ 

Y,   z*- E T*Z*- E v*z* + 

aeDin(AiliA2) a£D~r\Ai aeD„nA2 

Y   Va ~   Y   Taya = bn'  ne ■A/'2' 
aer>^n^3 a&D~nA3 

k < Za < Ua,     a E Al U A2, 

la<Va< Ua,     0, E A%. 

9.3 Numerical examples 

Mulvey and Vladimirou [15] did not provide data for the numerical examples 
that they discuss [13], so we have created two examples, each with two stages. 
There are five nodes in each stage: checking, savings, certificate of deposit 
(CD), cash, and loans, with initial balances of 100, 200, 150, 80, and -80, 
respectively. 

Of course, the yields are specified as random. The smaller problem, using 
stochastic file assets.sto.small, has 100 random realizations, while the 
larger problem, using assets.sto.large, has 37,500 realizations. 

9.4 Notational reconciliation 

Suppose the cardinality of A\ U Ai is n1; and that of As is n2. Enumerate 
the arcs so that arcs 1 through nx are in Ai U Ai-   Reorder the nodes so 
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that the first iVi are in the set jVi, and the rest are in ßf2.   For the set 
$ G {Ai,A2,T,V+,V-}, define the diagonal matrix Af G E"lXni by 

(Af)« 
1    if a G $ 

0    otherwise. 

Similarly, for the set $ G {.A3, T, Z>+, X>n }, define the diagonal matrix Af G 
R"2Xn2 by 

(Af). 
1    if (m + a) G $ 

0   otherwise. 

The notation of (1) requires determinism in all of the first stage coeffi- 
cients. However, since the only stochastic first stage coefficients are the costs, 
we can use the expected value. For arc a G A\ U A2 define 

fa :=   E [ra]. 

Note that for a G Ai, this is simply ra. Additionally, define fx G E™1 by 

\ra    if a G Ai 
(ri)a ■={ . 

[ra    it a G .A2. 

Similarly, let f 2 G E"2 be defined by 

(f2)o := r(n1+a),   Va 3 {nx + a) G .A3. 

To fit the notation of (1), we make the following assignments: 
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Xi :-- 

Z\ 

Zn\ 

4 

,   r := 

I'm 

,   ci := 
r 

ri2niXl 

.<. 

,  h 

•>JVi 

«1 

u 
-*1 

"m 
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M:-- 

(llxn»Aff-fTAfr) 

D 
(l^^A/1 -r^A/1) 

jn\xn\ 

_jn\xn\ 

r\Nix2ni 

X2 : = 

Vl 

Vni 

04 

-m 

rnixni     r\n\xn\ 

nnixni      rnixni 

b(N!+l) 

»(N^Na) 

c2 := 
r2 

Q2n2 xl 

w(m+l) 

M(ni+n2) 

-J(ni+1) 

'(ni+n2)   . 

(lixmA^i+D _ f|A"(Wl+1))(A^ + Af) 07 07 

T, 

and 

ß r>; 
(llx"iAi{Nl+N2) - fjAi(JVl+Ar2))(Af+Af2) 

Q2n2X m 

0N2 x2ni 

n2n.2X2ni 

£> Ö7 
(llx^A2

(Nl+1) - f JA2 (Wl+1))A^3 

(1lxn2A^1+N2) _ fTA^W*2))A^ 

JU2XU2 

_Tn2XTl2 

QN2x2ri2 

TTl2Xn2      an2xn2 

A7l2Xn2        JU2XU2 
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10    Cargo network scheduling 

Due to Mulvey and Ruszczyriski [14] 
(Two-stage, mixed integer linear or nonlinear stochastic problem) 

'/4node_det.sto 

/cargo/4node.cor, /4node.tim, < 
/4node.sto.16 

/4node.sto.32 

k/4node.sto.64 

10.1    Description 

Mulvey and Ruszczyriski [14] provide a two stage network problem for 
scheduling cargo transportation. The flight schedule is completely deter- 
mined in stage one, and the amounts of cargo to be shipped are uncertain. 
The recourse actions are to determine which cargo to place on which flights. 
Transshipment, getting cargo from node m to node n by more than one 
flight on more than one route, is allowed. When a transshipment is made, 
cargo must be unloaded at some intermediate node, so that it may be loaded 
onto a different route going through the same node. Such nodes are called 
transshipment nodes. Any undelivered cargo costs a penalty. 

The notation is introduced in Table 17. A route -K G V is a finite sequence 
of nodes (nx, n2,..., n{) to be visited in the course of flying the route. 

Table 17: Notation 

A/r=the set of nodes 
"P=the set of routes 
.4=the set of aircraft types 

b(m, n)=the amount of cargo to be shipped from node m to 
node n 

c(a) =the cost of an hour of flight time for aircraft type a 
h(ir, a)=flight hours required for aircraft type a to complete 

route 7T 
q=the unit cargo cost for loading and unloading an 

aircraft 
p=ihe unit penalty for undelivered cargo  

(continued on the next page) 
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Notation (continued) 
^function which returns the jth. node in route 7r 
=function which returns the number of nodes in route 

7T 

=the maximum number of landings allowed in node 
n 

=the maximum payload of an aircraft of type a 
=the minimum number of flights from node m to 
node n 

=the maximum flying hours for aircraft of type a 
=the minimum flying hours for aircraft of type a 
=the number of aircraft of type a assigned to fly route 

7T 

=the amount of cargo delivered directly from m to n 
on route TT 

=the amount of cargo moving from m to n which is 
moved to transshipment node k on route TT 

=the amount of transshipment cargo which is moved 
from transshipment node k to node n on route ir 

=the amount of cargo moving from m to n which is 
undelivered 

=the unused capacity of leg j on route n 
--{-K eV :m = v{ir,ji),n = v(n,j2),ji < h} 
-{TV G V : n = v(ir, 1)} 
--{IT eV :n = V(TTJ(IT))} 

-{n G V : n = v(n,j) for some j} 

The first stage constraints include minimum flight requirements 

2_]    \_J    x(n,a) > f(m,n),   Vm,n G A/", 
a£AireU(m,n) 

and maximum landings limits 

y^   y^   x(ir, a) < a(n),   VneAf. 
a£AixeW(n) 
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Assuming the operation is cyclic, we must end the round in the same state 
as that in which we began the round. That is, 

y^   x(n,a) =   yj   x(ir,a),   Va G A,n G J\f. 
ir€Vi(n) neVi(n) 

Flying hours are limited by 

hmin(a) < J2x{ir,a)h{ir,a) < hmax{a),   Va e A 

For recourse constraints, a cargo material balance yields 

Y] I d(ir, m,n) + ^2 ^ m» k,n)\ + y(m, n) > b(m, n),    Vra, neAf. 
Tver V keAf / 

A balance of all transshipments which go through k and wind up at n gives 

^ ^ t(7T,m, A;,n) = ^s(7r,A;,n),    Vk,neJ\f. 
■K€V meAf ireV 

Finally, consider the loading and unloading which must occur throughout 
the course of a single route. At the initial node, we have 

J2 I d{ir, v{ir, l),k) + s(ir, v(ir, 1), k) + ^ t{n, v(ir, 1), k, n) 
keAf V neAf / 

= J^d(o)a;(7r,o)-5!(7r,l),    VTT G V. 
aeA 

For the remaining nodes in the route, a payload balance yields 

Y^ {d(7r,v(Tr,j),k) + s(7r,v(7r,j),k) + ^2t(ir,v(Tv,j),k,n) 
keAf \ neAf 

- Y {d(n,k,v{ir,j)) + s(Tr,k,v(7r,j)) + y2t(Tr,k,v(-K,j),n) 
keAf  \ neAf J 

= z(ir,j - 1) - z(n,j),    WeV,j = 2,... (Z(TT) - 1). 
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The objective is to minimize the costs and penalties.  Mulvey and Ru- 
szczyhski [14] provide both a linear objective function 

minimize Zx — X^ X c(a)h(ir, a)x(-K, a) + 
n£V a£A 

E.  «E E b(m,n) 
TTEP (m,n)£7r 

d(7r, m, n) + S(TT, m, n) + X, *(TT, ra,ft, &) 
A; GAT 

+p X X! y(m'n) I' 

and a nonlinear objective function 

minimize Z2 = >J X c{a)h{ir, a)x(ir, a) + 
ireVaeA 

B.  * *£ E 
b(tn,n) 

TrGP (m,n)e7r 

rf(7r, m, n) + S(IT, m, n) + >J ^C71"' m> n> ^) 
fee M 

+pXE^m'n) 

where 

$(x) = aexp(/fa). (40) 

10.2    Problem statement 

Given $ as either the identity function or as in (40), the problem is to 

minimize Z = X} /J c(a)h(Tr, O)X(TT, a) + 
TT£V aeA 

E_. M«E E 
n€V (m,n)€7r   _ 

b(m,n) 
d(7r, m, n) + s(ir, m, n) + 2_\ t(n, m, n, k) 

fceAf 

+PY1 X^(m>n) 
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subject to 

V^    y~]    X(TT,a) > f(m,n),   Vm^eA/", 
a£A neU(m,n) 

y^   y^   x(ir,a) < a(n),   Vn G J\f, 
aeAireW(n) 

y^   x(7r,o)=   ^  a;(7r,a),   Va £ A,n £ J\f, 
7reVi(n) w6Vi(n) 

hmin{a) < ^2x{irta)h{n,a) < hmax(a),   Va G A, 

Y2 (c?(7r> m,n) + ^Lj i^7r'm> fc>n)) + y(m>n) ^ b(m'n)'   Vm>n e N, 
TTSP \ fceA/" / 

^      d(7T, V(7T, 1), &) + S(7T, ü(7T, 1), k) + ^ *(""> ^ 1). fc> ™) 

= ^2d(a)x(ir,a) - z(ir,l),    W G V, 
aeA 

Y^ I <*(*■>f fr»i)>fc) + «fr»u(7r»■?')>fc) + S *(7r'^^'fc'n) 
fc£AA V nGAf 

- ^ I d(n, k, v(n, j)) + S(TT, k, v{ir, j)) + ^T £(TT, k, v(ir, j),n) 

= z{ir,j - 1) - £(7r, j),    VTT G P, j = 2,... (Z(TT) - 1), 

x(ir,a),d(n,m,n),t(Tr,m,k,n),s(n,k,n),y(m,n),z(-K,j) > 0 

x(7r, a) G Z 
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10.3    Numerical examples 

Mulvey and Ruszczyhski [14] did not provide data for the numerical examples 
that they discuss [13]. Therefore, we have created some examples from a four 
node network, with node airports A, B, C and E. All flights IT G V have two 
legs. That is, including the airport of origin, there are three airports in each 
flight. No direct legs are allowed between A and E, but all other possibilities 
are allowed. Flights are enumerated according to Table 18. The notation 
"ABA" means that the flight begins at airport A, flies to airport B, and 
returns to airport A. 

Table 18: Possible flights IT G V for the numerical example 

0 ABA 6 BAB 13 ECE 19 CAC 
1 ABE 7 BAC 14 ECB 20 CAB 
2 ABC 8 BCA 15 ECA 21 CBC 
3 ACA 9 BCB 16 EBE 22 CBA 
4 ACE 10 BCE 17 EBC 23 CBE 
5 ACB 11 BEB 18 EBA 24 CEC 

12 BEC 25 CEB 

Two types of airplane are considered. Type 0 plane has a maximum 
payload of 8, maximum flight hours of 480, and costs 5 per flight hour. Type 
1 plane has a maximum payload of 6, maximum flight hours of 240, but only 
costs 4 per flight hour. Both types of airplanes may have flight hours as low 
as 0. The unit cost, q, for loading and unloading is 1.0, and p, the penalty 
for undelivered cargo is 1300. There are no minimum numbers of flights, and 
the limit on landings is, for the base problem, 25 for each airport. Flight 
times for the two plane types are listed in Table 19. 
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Table 19: Flight times for numerical example 

Airplane Type 0 Airpl ane Type 1 

A B C E A B C E 

A - 5 7 - A - 6 8.4 - 

B 5 - 4 8 B 6 - 4.8 9.6 

C 7 4 - 5 C 8.4 4.8 - 6 

E - 8 5 - E - 9.6 6 - 

10.4    Notational reconciliation 

We reconcile the problem in the Numerical examples section to the form of 
problem (1). Define 

xi := 

x(0,0) 
x(l,0) 

x(25,0) 
2(0,1) 
2(1,1) 

2(25,1) . 

and hi 

h(0,i) 
h(l,i) 

/i(25,i) 

for i = 0,1, and let h := 
hO 
hi 

We will make use of the incidence matrices 

W, Vi E E5x26, i = 1,2,3, defined by 

1    if node m is the iih node in route n 
\'i) mn 0   otherwise, 

and 

Wmn = 
1    if node m is in route n 

0    otherwise. 
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We are now ready to define the stage one problem parameters. Let 

a(l) 

Ai:= 

and 

w w 
(VL - Vs) Q5X26 

hi nlx26 

nlx26 hj 
-hj nlx26 

nlx26 -hl \ 

61 

C\ 
c{ti)hü 

a(5) 
QlOXl 

hmax(0) 
hmax(l) 
-/imin(0) 

-hmin(l) 

Stage two is a bit more involved. We order the stage two variables into 
x2 as shown below. When trying to figure out the ordering rationale for the 
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d, t and s variables, it will help to look at Table 18. 

x2 :-- 

d{0,A,B) 
d(l,A,B) 
d{2,A,B) 

d{2b,C,E) 
d(0,B,A) 
d(l,B,E) 

d(25,E,B) 
d{l,A,B) 
d(2,A,E) 
d{4,A,E) 

d(23,C,E) 
d{2b,C,B) 

t(0,A,B,C) 
t(0A,B,E) 
t(l,A,B,C) 
t{2,A,B,E) 
t(3,A,C,B) 

t(24, C, E, B) 
t(25,C,E,A) 

*(0,1) 

^(25,1) 
*(0,2) 

JS(25,2) 

The y variables follow an ordering we call "ordering J" the alphabetical 
ordering on all combinations of two nodes. We will make use of the following 
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Ui e R12x68 

u3 e R
12x36 

(tfs)tf := 

incidence matrices, defined as 

1 if the iih pair of J is served by the jth 
(Ui)ij := < element of 3:2, 

0 otherwise, 
1 if the ith pair of J is (m, n) in the j'th 

U2 e M12x36,        (J72)ü := \ t(ir,m,k,n), 
0 otherwise, 
1 if the zth pair in J is (k,n) in the jth 

t(-K,m, k,n), 
0 otherwise, 
1 if the ith pair in J is (k,n) in the jih 

[/4eEM, (Ü4)y:=^ s(7r,/c,n), 
0 otherwise, 

f 1 if the j'th t(p, m, k, n) has m = v(n, 1) and 
:= < p = 7T, 

0 otherwise, 
1 if the (52+j')th element of x2 isd(ir,m, n), 
0 otherwise, 

[/5GM26x36, (tfs)*; 

£/6GK26x16, (C/6)^:=<i 

and 

£/7G 1,26x36 
1   if the jth t(p, m, k, n) has k = v(ir, 2) and 

0   otherwise. 

We are finished putting the problem into the form (1) if we let 

A,:-- 
nl2x68 

j26x26     Q26X26     JJ 

x26      r26x26    n26x26 r26x26     j: o2 

u2 
Q12X26 Jl2xl2 

Ua -t/4 
Q12X12 

U* n26x26 Q26X12 

-u7 
J26X26 Q26X12 

Q12X52 

Q12X52 

^■26X26     Q26X26 

_J26X26     J26x26 

C2 := [ ^l1*68) | g(llx36) | q(l^26) | p{alxU) | 0lx52 ] ,        b2 := 

b 
Ql2xl 

n26xl 

Q26X1 
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and 

C2 •- 

Ql2x52 

Q12X52 

-d(0)/26x26   -d(l)/26x26 

Q26X52 
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11    Telecommunication network planning 

Due to Sen, Doverspike and Cosares [16] 
(Two stage, mixed integer linear stochastic problem) 
/phone /phone. cor,/phone .tim,phone. sto 

11.1    Description 

The service of providing private lines to telecommunication customers is one 
with which most people are not familiar. Such service is used by large cor- 
porations between business locations for high speed, private data transmis- 
sion. Private lines are generally used for a much longer duration than public 
switched service, and they generally carry more capacity per connection. 

A manager of such a network must be constantly looking to the future, de- 
ciding where and how much to expand capacity. In this problem formulation, 
the "how much" is decided beforehand, to some extent, by the imposition of 
an overall budget. Within the constraints of the budget, expansion is not pe- 
nalized. The goal is to minimize the unserved requests, while staying within 
budget. 

Such networks are usually very interconnected, so that for any point-to- 
point demand pair, there is usually more than one route which may service 
the demand. Each route is made of one or more direct links. 

Let n be the number of direct links in the network which might be ex- 
panded, and let x G Zn be the vector of expanded capacities in the links, 
where TL is the set of integers. Let m be the number of point-to-point pairs 
to be served by the network, and d G Zm be the random variable of demands 
for service between the pairs. 

The total budget constraint will be denoted by b. Then, the problem is 
to 

minimize      E [Q(x, d)] 
d 

n 

subject to     2.1xi — ^' 

x > 0, 

where Q(x, d) represents the number of unserved requests, subject to network 
balance constraints. 
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For point-to-point pair i = 1,... ,m, let R(i) be the set of routes which 
may be used to satisfy a request for service between the two locations. Ad- 
ditionally, for route r <E R(i), let air £ Z" be the incidence vector defined 
by 

_ f 1    if link j e r, 

1 0   otherwise. 

Let e G Zn be the existing capacity in the network. 
The recourse variables are sit the number of unserved requests, and /ir, 

the number of connections serving point-to-point pair i over route r. Then, 
the recourse problem is 

m 

Q(x,d) :=minimize      /]Si 

m 

subject to      2J 2_/ a""/"" — x + e' 
i=l reH(i) 

J^   /<r + si = (d)*>      Vi = 1, . . . , m 
r€Ä(») 

/ir,Si>0,    Vi,reÄ(i) 

/ireZ,    Vi,r€Ä(i). 
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11.2    Problem statement 

Given the budget constraint b, and the current condition of the network 
{air, e}, the problem is to 

minimize      E 
d 

subject to     \~\(x)j — k> 

i=l rGÄ(i) 

XI /fr + ^ = (d)t,    Vi = 1,... , m 
r£R(i) 

x,fir,Si>0,    Vi,r e R(i) 

x,fireZ,    Vi,r<ER(i). 

11.3    Numerical example 

We have created an example with 215 = 32,768 random realizations and six 
nodes. The possible routing is illustrated in Figure 7, and the possible routes 
connecting each two-node combination are enumerated in Table 20. 

The initial capacity of the network, e, is as follows: 

route 1 2 3 4 5 6 7 8 
capacity 2 2 4 4 2 4 3 1 

11.4    Notational reconciliation 

To put the problem into the notation of (1), let zx e K and z2 G Mn be slack 
variables. Then set 

xi := 
x jn+1 

Cl := 0"+\ 

Al .= 1lx(n+l)j bi  ._ b € R) 
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Table 20: Enumeration of all possible routes 
]      node 1 -> 4 node 1 —>■ 2      node 1 

for telephone network example 
node 1 ->■ 5      node 1 ->■ 6 

0 12 

1 142 
2 1452 

3 1342 
4 13452 

node 2 —>• 
0 213 
1 2143 

243 
2543 
25413 
2413 

2 
3 
4 
5 
6 3125 

0 13 

1 143 

2 1243 
3 12543 

node 2 — 
0 24 
1 214 
2 2134 
3 254 

2 
3 
4 
5 

node 3 —> 5  node 3 
0 345 
1 3425 

3145 
31425 
34125 
31245 

0 36 

0 14 
1 124 

2 1254 

3 134 

0 

1 
2 

3 
4 
5 

125 

1245 
145 

1425 
1345 
13425 

0 
1 
2 

3 

136 

1436 
12436 
125436 

node 2 —> 5  node 2 -> 6  node 3 -» 4 

0 25 
1 245 
2 2145 
3 21345 

0 
1 
2 

3 
4 
5 

2136 
21436 
2436 
24136 
25436 
254136 

0 
1 
2 
3 

34 
314 
3124 
31254 

node 4 —>• 5  node 4 ->■ 6  node 5 ->■ 6 
0 45 
1 425 
2 4125 
3 43125 

0 436 
1 4136 
2 42136 
3 452136 

0 
1 
2 

3 
4 

5 
6 

5436 
54136 
52436 
524136 
52136 
542136 
521436 
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Figure 7: Illustration of routing for telephone network example 

1 

x2 :-- 

/n 
/l2 

/lK(l) 

JmR(m) 

Si 

S2 

^2 

12 ■- 

c2 := 

n(mi£(m))xl 

imxl 

nnxl 
b2:= 

an   «12 • ■ •    OlH(l) Q"mR(m) 
™xm rnxn 

•j^lxK(l) 0lxÄ(2)     . . r\lxR(m) 

QlXÄ(l) ^lxB(2) 
jmxm nmxii 

QlXÄ(l) 0lxÄ(2)     . • ilxR(m) 

and 

0 
rtmxn      n 
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12    Bond investment planning 

Due to K. Frauendorfer, C. Marohn, M. Schürte [6] 
(Multistage, linear stochastic problem) 

12.1    Description 

Frauendorfer, Marohn, and Schürle [6] describe a suite of test problems for 
multistage stochastic programming, based on bond investments. The test 
problems are denoted SGPFmYn, where m G {3,5}, and n e {3,4,5,6,7}. 

Many business ventures are financed by lending bonds, and many of these 
ventures also purchase bonds. There is risk in such dealings, as returns on 
bonds fluctuate, and earnings from the business ventures are uncertain. This 
risk cannot be modeled by assuming a mean rate of return. Therefore, the 
scenario is a good one for the application of stochastic programming. 

Bonds mature in certain, standard time periods. Suppose we will consider 
transactions in bonds with standard maturities in the set Vs. Suppose that 
the longest maturity in Vs is D months. Then, since the time frame is rolling 
in such problems, we must include in the model bonds which mature in d 
months, where deV = {1,2,... , D}. 

Let vf'+ be the amount of new borrowing done at time t with maturity 
d e Vs, and let vf'~ be the amount of new lending done in the same cir- 
cumstances. Then, if vf is the balance of bond transactions at time t with 
maturity d, we have 

vf±l + vf'+ - v{'~    if de Vs, 

vf^ a de v\vs. 

The total balance of bond transactions at time t is 

*. = £"'■ 
dev 

If this quantity is positive, the balance will be used to fund the business 
venture during the time period t. Rather than writing xt as a function of 
historical balances and rates of return, Frauendorfer, Marohn, and Schürle 
[6] simply express it as the stochastic quantity 

xt — Xt-i + ft, 
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where £t is a random variable. 
To limit the sale of bonds, the authors [6] include the constraint 

M 

devs d=\ 

Given random rates of return %'~, %'+, and rft, corresponding to the 
quantities vf'~, vf'+, and xt, respectively, the objective is to maximize the 
expected return: 

"'c   lt=o \devs 

The returns at time t = 0 are actually deterministic. So the decision variables 
for time t — 0 are the so-called first stage decision variables in the stochastic 
problem. 

12.2    Problem statement 

We change the problem to a minimization, and separate the first stage vari- 
ables and constraints from the recourse variables and constraints. We are 
given all values for the time t = — 1 decision variables, and the time t = 0 
values of all r] and £. The program then is to 

minimize  ^ [-^'"vj" + tf+u£+] - rßx0 + 
d€Vs 

T 
E  E Et-^+WI-'it xt 

"'*   ' t=i  \devs 

subject to 

vi-v%1-v}+ + v}- = 0,    We Vs, (41) 

v
d - v

d_f = 0,    We V\VS, (42) 

x0-J2vo=°> 
dev 

x0 - x-i = £0, 
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M 

X>o*+-£"-i^°' (43) 

< - «ft1 - vf>+ + vf'- = 0,    VdeVs,t = l,...,T, 

v{ - v£i = o,   we V\VS, t = l,...,T, 

a*-Ev? = 0.    W = 1,...,T, 
dex> 

xf-a;t_i = &,    Vt = 1,... ,T, 
M 

E^-E"?-!^^    Vt = l,...,T, (44) 
decs d=i 

^'+,^'->0,    VdeZ>,* = l,...,T. 

12.3 Numerical examples 

A total of ten numerical examples in SMPS format [1] are available from 
Birge's POSTS web site [9]. Since the only coefficients to be specified in 
this model are stochastic, specifying any one problem here would require 
duplicating the stochastic file from the set of SMPS files. Therefore, we refer 
the reader to the publicly available SMPS files [9]. 

12.4 Notational reconciliation 

We may rearrange the equations represented by (41) and (42) so that they 
are in ascending order, by d. Then we have D constraints, each with right- 
hand sides vd_Xl, and left hand sides depending on whether d G Vs or not. 
We replace all vf with the term (vpd - vmf), with the added constraints that 
vpd, vmf > 0. 

Let {dl, d2,... , dN} = {d G Vs}. We define the matrix A5 G RDxN by 

A5 := [ edl   ed2   ■■■   edN ] , 

where e{ G M.D is the ith unit vector. 
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Let st be the slack variable associated with constraint (43) or (44). Assign 
the new notation 

61 

(vp-i — vm2^) 
(vps_i — vm3^) 

(vp^l — vm 
0 
0 

£0 + X-i 

Dd 

vm' 4i) 

c\ ■■-- 

-r)o 

vih+ 

Q2DXO 

and 

Xi x0   s0   V, 
dl,+ 
0 V, 

dN,+ 
0 

dl, JN>- 

vpl   •• •   vPo vml   • • 

As jDxD _jDxD 

QlxAT _^lxD -^lxD 

QIXN QIXD QlxD 

QIXJV QlXD QIXD 

vm. D 

Also, let 

nDxl    QDXI    —/\
S 

1 0      0lxN 

1 0      0lxN 

0 1      llxAr 

Analogous assignments are made for t = 2,3,... ,T, except that ct is 
made stochastic for these times, because 77 is stochastic. Also, 

QDX! 

0 
bt:=        0 

6-1 
_ &-i 

and 

T,:= 

QDX! 0Dxl QDXJV QDXN _jDxD jDxD 

0 0 QlxN QlxN QIXD QlXD 

-1 0 QlxN QlxN QlXD QlXD 

0 0 QlxN QlxN -WX Wx 
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where 

Wl .=  [  XlxM    glxCD-M)  j 
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